Skip to main content
Log in

Transcriptome analysis of heat stressed seedlings with or without pre-heat treatment in Cryptomeria japonica

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

With global warming as a major environment concern over the coming years, heat tolerance is an important trait for forest tree survival during the predicted future warmer weather conditions. Cryptomeria japonica is a coniferous species widely distributed throughout Japan, and thus, can adapt to a wide range of air temperatures. To elucidate genes involved in heat response in Cryptomeria japonica, transcriptome analysis was conducted for seedlings under heat shock conditions. To test whether heat acclimation affects levels of gene expression, half of the seedlings were pretreated with moderately high temperatures prior to heat shock. De novo assembly of the transcriptome generated 107,924 unigenes and the analysis of differentially expressed genes was conducted using these unigenes. A total of 5217 differentially expressed genes were identified. Most genes upregulated by heat shock, regardless of pre-heat treatment, were conserved to heat response genes of angiosperm species, such as heat shock factors (Hsf) and heat shock proteins (Hsp). Pre-heating of seedlings affected expression levels of several Hsfs and their induction was lower in pre-heated seedlings than in seedlings without pre-heat treatment. This suggests a conserved role of Hsfs in heat response and heat acclimation in seed plants. On the other hand, many unknown genes were upregulated in only seedlings without pre-heat treatment after heat exposure. Notably, expression of gypsy/Ty3 type retrotransposons was dramatically induced. These findings provide valuable information to develop a better understanding of the molecular mechanisms of heat response and acclimation in C. japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw sequence data from this study have been deposited at the DDBJ Sequence Read Archive (DRA), accession no. DRA009205.

References

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23(2):139–150

    Google Scholar 

  • Bäurle I (2016) Plant heat adaptation: priming in response to heat stress. f1000res. https://doi.org/10.12688/f1000research.7526.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O (2014) How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genet 10(1):e1004115

    PubMed  PubMed Central  Google Scholar 

  • Cerveau N, Jackson DJ (2016) Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. BMC Bioinform 17(1):525

    Google Scholar 

  • Chang E, Shi S, Liu J, Cheng T, Xue L, Yang X, Yang W, Lan Q, Jiang Z (2012) Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR. PLoS ONE 7(3):e33278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yin W, Xia X (2014) Transcriptome profiles of Populus euphratica upon heat shock stress. Curr Genomics 15(5):326–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TY, Chang WC (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44(D1):D1154–1160

    CAS  PubMed  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485

    Google Scholar 

  • Dickinson PJ, Kumar M, Martinho C, Yoo SJ, Lan H, Artavanis G, Charoensawan V, Schöttler MA, Bock R, Jaeger KE, Wigge PA (2018) Chloroplast signaling gates thermotolerance in arabidopsis. Cell Rep 22(7):1657–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escandón M, Valledor L, Pascual J, Pinto G, Cañal MJ, Meijón M (2017) System-wide analysis of short-term response to high temperature in Pinus radiata. J Exp Bot 68(13):3629–3641

    PubMed  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hwang JE, Kim YJ, Shin MH, Hyun HJ, Bohnert HJ, Park HC (2018) A comprehensive analysis of the Korean fir (Abies koreana) genes expressed under heat stress using transcriptome analysis. Sci Rep 8(1):10233. https://doi.org/10.1038/s41598-018-28552-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157(3):1243–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472(7341):115–119

    CAS  PubMed  Google Scholar 

  • Ito H, Yoshida T, Tsukahara S, Kawabe A (2013) Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene 518(2):256–261

    CAS  PubMed  Google Scholar 

  • Japan Meteorological Agency (2015) Climate change monitoring report 2014. Japan Meteorological Agency, Tokyo

    Google Scholar 

  • Jia J, Zhou J, Shi W, Cao X, Luo J, Polle A, Luo ZB (2017) Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Sci Rep 7:43215. https://doi.org/10.1038/srep43215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl M (2019) MKmisc: Miscellaneous functions from M. Kohl. R package version 1.6. http://www.stamats.de

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    CAS  PubMed  Google Scholar 

  • Kolb PF, Robberecht R (1996) High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Tree Physiol 16(8):665–672

    CAS  PubMed  Google Scholar 

  • Koppenaal RS, Colombo SJ, Blumwald E (1991) Acquired thermotolerance of jack pine, white spruce and black spruce seedlings. Tree Physiol 8(1):83–91

    CAS  PubMed  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146(2):748–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29(8):1035–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659

    CAS  PubMed  Google Scholar 

  • Li L, Xing Y, Chang D, Fang S, Cui B, Li Q, Wang X, Guo S, Yang X, Men S, Shen Y (2016) CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence. Sci Rep 6:31889. https://doi.org/10.1038/srep31889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    CAS  PubMed  Google Scholar 

  • Liu J, Li G, Chang Z, Yu T, Liu B, McMullen R, Chen P, Huang X (2016) BinPacker: packing-based de novo transcriptome assembly from RNA-seq data. PLoS Comput Biol 12(2):e1004772

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Lucas A (2019) amap: another multidimensional analysis package. R package version 0.8-18. https://CRAN.R-project.org/package=amap

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17(1):10–12

    Google Scholar 

  • Masuta Y, Kawabe A, Nozawa K, Naito K, Kato A, Ito H (2018) Characterization of a heat-activated retrotransposon in Vigna angularis. Breed Sci 68(2):168–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47(D1):D419–D426

    CAS  PubMed  Google Scholar 

  • Nawkar GM, Maibam P, Park JH, Woo SG, Kim CY, Lee SY, Kang CH (2017) In silico study on Arabidopsis BAG gene expression in response to environmental stresses. Protoplasma 254(1):409–421

    CAS  PubMed  Google Scholar 

  • Neumann P, Novák P, Hoštáková N, Macas J (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 1(10):1. https://doi.org/10.1186/s13100-018-0144-1

    Article  Google Scholar 

  • Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y et al (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52(5):933–945

    CAS  PubMed  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32(Database issue):D360–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) physiological responses of forest trees to heat and drought. Plant Biol 8(5):556–571

    CAS  PubMed  Google Scholar 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2016) The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun 7:12439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Nishiyama T, Shimizu K, Kadota K (2013) TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinform 14:219

    Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8(1):125

    PubMed  PubMed Central  Google Scholar 

  • Ujino-Ihara T, Ueno S, Uchiyama K, Futamura N (2018) Comprehensive analysis of small RNAs expressed in developing male strobili of Cryptomeria japonica. PLoS ONE 13(3):e0193665

    PubMed  PubMed Central  Google Scholar 

  • Voronova A, Jansons Ā, Ruņģis D (2011) Expression of retrotransposon-like sequences in Scots pine (Pinus sylvestris) in response to heat stress. Environ Exp Biol 9:121–127

    Google Scholar 

  • Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10(4):937–951

    Google Scholar 

  • Yan J (2016) som: Self-Organizing Map. R package version 0.3–5.1. https://CRAN.R-project.org/package=som

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2014) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43(D1):D982–D989

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J (2015) Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16:181

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Igasaki and Dr. Murata for their helpful comments.

Funding

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant Number 25660128) and was partially supported by the FFPRI Encouragement Model in Support of Researchers with Family Responsibilities of the Forestry and Forest Products Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokuko Ujino-Ihara.

Ethics declarations

Conflict of interest

The author declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2355 kb)

Supplementary file2 (DOCX 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujino-Ihara, T. Transcriptome analysis of heat stressed seedlings with or without pre-heat treatment in Cryptomeria japonica. Mol Genet Genomics 295, 1163–1172 (2020). https://doi.org/10.1007/s00438-020-01689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01689-3

Keywords

Navigation