Skip to main content
Log in

Vinylazides: versatile synthons and magical precursors for the construction of N-heterocycles

  • Short review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Nowadays, application of vinylazides as precursors is a key method for the construction of N-heterocycles in organic synthesis. These versatile three-atom synthons can be converted into intermediates such as 2H-azirines, iminyl radicals, iminyl metal complexes, iminyl inions and nitrilium ions that subsequently afford a wide range of polyfunctional cyclic nitrogen-containing compounds. In this review, the reactions of vinylazides leading to these products (in the last decade) are categorized based on the types of the resulting N-heterocyclic rings and a brief and concise description of the reaction mechanisms is presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Fig. 2
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Fig. 3
Scheme 39
Fig. 4
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Fig. 5
Scheme 46
Scheme 47
Scheme 48
Scheme 49

Similar content being viewed by others

References

  1. Bandini M, Eichholzer A (2009) Katalytische Funktionalisierung von Indolen in einer neuen Dimension. Angew Chem 121:9786–9824. https://doi.org/10.1002/ange.200901843

    Article  Google Scholar 

  2. Humphrey GR, Kuethe JT (2006) Practical methodologies for the synthesis of indoles. Chem Rev 106:2875–2911. https://doi.org/10.1021/cr0505270

    Article  CAS  PubMed  Google Scholar 

  3. Liu JH, Yang QC, Mak TC, Wong HN (2000) Highly regioselective synthesis of 2, 3, 4-trisubstituted 1 H-pyrroles: a formal total synthesis of lukianol A. J Org Chem 65:3587–3595. https://doi.org/10.1021/jo9915224

    Article  PubMed  Google Scholar 

  4. Dixon DD, Lockner JW, Zhou Q, Baran PS (2012) Scalable, divergent synthesis of meroterpenoids via “borono-sclareolide”. J Am Chem Soc 134:8432–8435. https://doi.org/10.1021/ja303937y

    Article  CAS  PubMed  Google Scholar 

  5. Hu B, DiMagno SG (2015) Reactivities of vinyl azides and their recent applications in nitrogen heterocycle synthesis. Org Biomol Chem 13:3844–3855. https://doi.org/10.1039/C5OB00099H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Z-B, Hong D, Wang Y-G (2008) A cascade approach to pyridines from 2-azido-2, 4-dienoates and α-diazocarbonyl compounds. J Org Chem 74:903–905. https://doi.org/10.1021/jo802159g

    Article  CAS  Google Scholar 

  7. Wang YF, Chiba S (2009) Mn(III)-mediated reactions of cyclopropanols with vinyl azides: synthesis of pyridine and 2-azabicyclo [3.3. 1] non-2-en-1-ol derivatives. J Am Chem Soc 131:12570–12572. https://doi.org/10.1021/ja905110c

    Article  CAS  PubMed  Google Scholar 

  8. Timén ÅS, Risberg E, Somfai P (2003) Improved procedure for cyclization of vinyl azides into 3-substituted-2H-azirines. Tetrahedron Lett 44:5339–5341. https://doi.org/10.1016/S0040-4039(03)01205-X

    Article  CAS  Google Scholar 

  9. Knittel D (1985) Verbesserte synthese von α-azidozimtsäure-estern und 2H-azirinen. Synthesis (Stuttgart) 1985:186–188. https://doi.org/10.1055/s-1985-31149

    Article  Google Scholar 

  10. Cenini S, Gallo E, Caselli A, Ragaini F, Fantauzzi S, Piangiolino C (2006) Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes. Coord Chem Rev 250:1234–1253. https://doi.org/10.1016/j.ccr.2005.10.002

    Article  CAS  Google Scholar 

  11. Wang YF, Toh KK, Chiba S, Narasaka K (2008) Mn (III)-catalyzed synthesis of pyrroles from vinyl azides and 1, 3-dicarbonyl compounds. Org Lett 10:5019–5022. https://doi.org/10.1021/ol802120u

    Article  CAS  PubMed  Google Scholar 

  12. Wang YF, Toh KK, Lee JY, Chiba S (2011) Synthesis of isoquinolines from α-aryl vinyl azides and internal alkynes by Rh–Cu bimetallic cooperation. Angew Chem Int Ed 50:5927–5931. https://doi.org/10.1002/anie.201101009

    Article  CAS  Google Scholar 

  13. Chen W, Hu M, Wu J, Zou H, Yu Y (2010) Domino approach for the synthesis of pyrrolo [1, 2-α] pyrazine from vinyl azides. Org Lett 12:3863–3865. https://doi.org/10.1021/ol101538x

    Article  CAS  PubMed  Google Scholar 

  14. Thakore A, Buchshriber J, Oehlschlager A (1973) Vinyl azides as diazoenamines. Can J Chem 51:2406–2414. https://doi.org/10.1139/v73-360

    Article  CAS  Google Scholar 

  15. Fu J, Zanoni G, Anderson EA, Bi X (2017) α-Substituted vinyl azides: an emerging functionalized alkene. Chem Soc Rev 46:7208–7228. https://doi.org/10.1039/C7CS00017K

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi H, Kaga A, Chiba S (2017) Application of vinyl azides in chemical synthesis: a recent update. J Org Chem 82:11981–11989. https://doi.org/10.1021/acs.joc.7b02455

    Article  CAS  PubMed  Google Scholar 

  17. Hu B, Wang Z, Ai N, Zheng J, Liu X-H, Shan S, Wang Z (2011) Catalyst-free preparation of 1, 2, 4, 5-tetrasubstituted imidazoles from a novel unexpected domino reaction of 2-azido acrylates and nitrones. Org Lett 13:6362–6365. https://doi.org/10.1021/ol202650z

    Article  CAS  PubMed  Google Scholar 

  18. Hu B, Ai N, Wang Z, Xu X, Lia X (2012) One-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles by a tandem three-component reaction of hydroxylamines, aldehydes and 2-azido acrylates. Arkivoc 6:222–228. https://doi.org/10.3998/ark.5550190.0013.621

    Article  Google Scholar 

  19. Xie H, Liu JC, Wu L, Ding MW (2012) New efficient synthesis of trisubstituted imidazolidine-2-thiones and thiazoles via vinyliminophosphoranes. Tetrahedron 68:7984–7990. https://doi.org/10.1016/j.tet.2012.07.002

    Article  CAS  Google Scholar 

  20. Liu S, Shao J, Guo X, Luo J, Zhao M, Zhang G, Yu Y (2014) Facile, efficient synthesis of polyfunctionalized 2-aminoimidazoles via vinyl azides and cyanamide. Tetrahedron 70:1418–1421. https://doi.org/10.1016/j.tet.2014.01.007

    Article  CAS  Google Scholar 

  21. Rajaguru K, Suresh R, Mariappan A, Muthusubramanian S, Bhuvanesh N (2014) Erbium triflate promoted multicomponent synthesis of highly substituted imidazoles. Org Lett 16:744–747. https://doi.org/10.1021/ol403456b

    Article  CAS  PubMed  Google Scholar 

  22. Sashidhara KV, Prasad Dodda R, Upadhyay A, Reddy Palnati G, Modukuri RK, Kant R (2016) Synthesis of highly substituted imidazo [1, 5-a] quinoxalines through a multicomponent reaction followed by deprotection–cyclization. Adv Synth Catal 358:2612–2618. https://doi.org/10.1002/adsc.201600285

    Article  CAS  Google Scholar 

  23. Luo J, Chen W, Shao J, Liu X, Shu K, Tang P, Yu Y (2015) Synthesis of poly-functionalized imidazoles via vinyl azides annulation. RSC Adv 5:55808–55811. https://doi.org/10.1039/C5RA07320K

    Article  CAS  Google Scholar 

  24. Adiyala PR, Mani GS, Nanubolu JB, Shekar KC, Maurya RA (2015) Access to imidazo [1, 2-a] pyridines via annulation of α-keto vinyl azides and 2-aminopyridines. Org Lett 17:4308–4311. https://doi.org/10.1021/acs.orglett.5b02124

    Article  CAS  PubMed  Google Scholar 

  25. Adiyala PR, Borra S, Kamal A, Maurya RA (2016) Access to imidazole derivatives by silver (I) carbonate mediated coupling of vinyl azides with secondary amines. Eur J Org Chem 2016:1269–1273. https://doi.org/10.1002/ejoc.201600015

    Article  Google Scholar 

  26. Tiwari DK, Maurya RA, Nanubolu JB (2016) Visible-light/photoredox-mediated sp3 C–H functionalization and coupling of secondary amines with vinyl azides in flow microreactors. Chem A Eur J 22:526–530. https://doi.org/10.1002/chem.201504292

    Article  CAS  Google Scholar 

  27. Adib M, Peytam F, Rahmanian-Jazi M, Bijanzadeh HR, Amanlou M (2017) A new synthetic strategy towards 2, 4, 5-trisubstituted 1H-imidazoles and highly substituted pyrrolo [1, 2-c] imidazoles by use of α-azidochalcones via Michael addition-cyclization followed by Wittig reaction. Tetrahedron 73:6696–6705. https://doi.org/10.1016/j.tet.2017.09.042

    Article  CAS  Google Scholar 

  28. Smirnov AY, Baleeva NS, Zaitseva SO, Mineev KS, Baranov MS (2018) Derivatives of azidocinnamic acid in the synthesis of 2-amino-4-arylidene-1H-imidazol-5 (4H)-ones. Chem Heterocyclic Compd 54:625–629. https://doi.org/10.1007/s10593-018-2318-7

    Article  CAS  Google Scholar 

  29. Dong H, Shen M, Redford JE, Stokes BJ, Pumphrey AL, Driver TG (2007) Transition metal-catalyzed synthesis of pyrroles from dienyl azides. Org Lett 9:5191–5194. https://doi.org/10.1021/ol702262f

    Article  CAS  PubMed  Google Scholar 

  30. Yu W, Chen W, Liu S, Shao J, Shao Z, Lin H, Yu Y (2013) Facile, eco-friendly, catalyst-free synthesis of polyfunctionalized 2-aminopyrroles. Tetrahedron 69:1953–1957. https://doi.org/10.1016/j.tet.2012.11.041

    Article  CAS  Google Scholar 

  31. Suresh R, Muthusubramanian S, Nagaraj M, Manickam G (2013) Indium trichloride catalyzed regioselective synthesis of substituted pyrroles in water. Tetrahedron 54:1779–1784. https://doi.org/10.1016/j.tetlet.2012.11.065

    Article  CAS  Google Scholar 

  32. Bonacorso HG, Libero FM, Dal Forno GM, Pittaluga EP, Porte LM, Martins MA, Zanatta N (2015) A telescoped protocol for the synthesis of new pyrrolo [3, 4-d] pyridazinones by cascade reactions. Tetrahedron Lett 56:5190–5195. https://doi.org/10.1016/j.tetlet.2015.07.035

    Article  CAS  Google Scholar 

  33. Bonacorso HG, Magalhães HT, Forno GMD, Libero FM, Hoerner M, Frizzo CP, Martins MA, Zanatta N (2019) Streamlined synthesis of 6-((1H-1, 2, 3-triazol-4-yl) methyl)-1H-pyrrolo [3, 4-d] pyridazin-1-one system via sequential N-alkylation, CuAAC, and [4 + 2] cyclization reactions. J Braz Chem Soc 30:1189–1202. https://doi.org/10.21577/0103-5053.20190013

    Article  CAS  Google Scholar 

  34. Guo S, Chen B, Zhao D, Chen W, Zhang G (2016) Manganese (II)-mediated domino annulation reaction of vinyl azides and 4-hydroxycoumarin: a stereoselective synthesis of spirobenzofuranone-lactams. Adv Synth Catal 358:3010–3014. https://doi.org/10.1002/adsc.201600423

    Article  CAS  Google Scholar 

  35. O’Brien AG, Lévesque F, Seeberger PH (2011) Continuous flow thermolysis of azidoacrylates for the synthesis of heterocycles and pharmaceutical intermediates. Chem Commun 47:2688–2690. https://doi.org/10.1039/C0CC04481D

    Article  Google Scholar 

  36. Zhang Y, Liu S, Yu W, Hu M, Zhang G, Yu Y (2013) Palladium-catalyzed synthesis of 3-alkenyl indoles from 2-azido-3-arylacrylates and terminal alkenes at room temperature. Tetrahedron 69:2070–2074. https://doi.org/10.1016/j.tet.2012.11.062

    Article  CAS  Google Scholar 

  37. Guo S, Chen B, Guo X, Zhang G, Yu Y (2015) Mn (II)-catalyzed synthesis of benzo [f] indole-4, 9-diones via vinyl azides and 2-hydroxynaphthoquinone. Tetrahedron 71:9371–9375. https://doi.org/10.1016/j.tet.2015.08.067

    Article  CAS  Google Scholar 

  38. Borra S, Chandrasekhar D, Newar UD, Maurya RA (2018) Access to 2, 3-fused pyrroles via visible light driven coupling of α-azidochalcones with 1/2-naphthols, or 2-hydroxy-1, 4-naphthoquinone. J Org Chem 84:1042–1052. https://doi.org/10.1021/acs.joc.8b02459

    Article  CAS  PubMed  Google Scholar 

  39. Hu J, Cheng Y, Yang Y, Rao Y (2011) A general and efficient approach to 2 H-indazoles and 1 H-pyrazoles through copper-catalyzed intramolecular N–N bond formation under mild conditions. Chem Commun 47:10133–10135. https://doi.org/10.1039/C1CC13908H

    Article  CAS  Google Scholar 

  40. Zou H, Zhu H, Shao J, Wu J, Chen W, Giulianotti MA, Yu Y (2011) A facile approach to polysubstituted pyrazoles from hydrazonyl chlorides and vinyl azides. Tetrahedron 67:4887–4891. https://doi.org/10.1016/j.tet.2011.04.103

    Article  CAS  Google Scholar 

  41. Zhang G, Ni H, Chen W, Shao J, Liu H, Chen B, Yu Y (2013) One-pot three-component approach to the synthesis of polyfunctional pyrazoles. Org Lett 15:5967–5969. https://doi.org/10.1021/ol402810f

    Article  CAS  PubMed  Google Scholar 

  42. Huang W, Liu S, Chen B, Guo X, Yu Y (2015) Synthesis of polysubstituted 4-aminopyrazoles and 4-hydroxypyrazoles from vinyl azides and hydrazines. RSC Adv 5:32740–32743. https://doi.org/10.1039/C5RA04371A

    Article  CAS  Google Scholar 

  43. Madugula AK, Mahendran V, Sridhara AM, Rangaiah G (2016) An efficient and novel regioselective synthesis of phosphonylpyrazoles from vinylazides and bestmann-ohira reagent. Oriental J Chem 32:2533–2541. https://doi.org/10.13005/ojc/320524

    Article  CAS  Google Scholar 

  44. Xie H, Yuan D, Ding MW (2012) Unexpected synthesis of 2, 4, 5-trisubstituted oxazoles via a tandem aza-Wittig/Michael/isomerization reaction of vinyliminophosphorane. J Org Chem 77:2954–2958. https://doi.org/10.1021/jo202588j

    Article  CAS  PubMed  Google Scholar 

  45. Xie H, Rao Y, Ding MW (2017) Synthesis of fluorescent trisubstituted oxazoles via a facile tandem Staudinger/aza-Wittig/isomerization reaction. Dyes Pigments 139:440–447. https://doi.org/10.1016/j.dyepig.2016.12.040

    Article  CAS  Google Scholar 

  46. Hu M, He X, Niu Z, Yan Z, Zhou F, Shang Y (2014) Synthesis of 3, 4, 5-trisubstituted isoxazoles by the 1, 3-dipolar cycloaddition reaction of α-azido acrylates and aromatic oximes. Synthesis 46:510–514. https://doi.org/10.1055/s-0033-1340470

    Article  CAS  Google Scholar 

  47. Chen B, Ni H, Guo X, Zhang G, Yu Y (2014) Facile preparation of 3, 5-disubstituted-4-aminothiophene-2-carbaldehyde from a novel unexpected domino reaction of vinyl azides and 1, 4-dithiane-2, 5-diol. RSC Adv 4:44462–44465. https://doi.org/10.1039/C4RA08649J

    Article  CAS  Google Scholar 

  48. Zhang G, Chen B, Guo X, Guo S, Yu Y (2015) Iron (II)-promoted synthesis of 2-aminothiazoles via C-N bond formation from vinyl azides and potassium thiocyanate. Adv Synth Catal 357:1065–1069. https://doi.org/10.1002/adsc.201400856

    Article  CAS  Google Scholar 

  49. Borra S, Chandrasekhar D, Khound S, Maurya RA (2017) Access to 1 a, 6 b-dihydro-1 H-benzofuro [2, 3-b] azirines and benzofuran-2-amines via visible light triggered decomposition of α-azidochalcones. Org Lett 19:5364–5367. https://doi.org/10.1021/acs.orglett.7b02643

    Article  CAS  PubMed  Google Scholar 

  50. Shao J, Yu W, Shao Z, Yu Y (2012) A “one-pot” multicomponent approach to polysubstituted 4-aminopyridines. Chem Commun 48:2785–2787. https://doi.org/10.1039/C2CC17850H

    Article  CAS  Google Scholar 

  51. Shu K, Shao J, Li H, Chen B, Tang P, Liu X, Chen W, Yu Y (2016) Base-mediated synthesis of highly functionalized 2-aminonicotinonitriles from α-keto vinyl azides and α, α-dicyanoalkenes. RSC Adv 6:49123–49126. https://doi.org/10.1039/C6RA04669J

    Article  CAS  Google Scholar 

  52. Adib M, Peytam F (2018) An efficient synthesis of fully substituted pyrazolo [3, 4-b] pyridin-5-amines from α-azidochalcones. Tetrahedron 74:2414–2420. https://doi.org/10.1016/j.tet.2018.03.036

    Article  CAS  Google Scholar 

  53. Adib M, Peytam F, Rahmanian-Jazi M, Mahernia S, Bijanzadeh HR, Jahani M, Mohammadi-Khanaposhtani M, Imanparast S, Faramarzi MA, Mahdavi M (2018) New 6-amino-pyrido [2, 3-d] pyrimidine-2, 4-diones as novel agents to treat type 2 diabetes: a simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur J Med Chem 155:353–363. https://doi.org/10.1016/j.ejmech.2018.05.046

    Article  CAS  PubMed  Google Scholar 

  54. Adib M, Peytam F, Rahmanian-Jazi M, Mohammadi-Khanaposhtani M, Mahernia S, Bijanzadeh HR, Jahani M, Imanparast S, Faramarzi MA, Mahdavi M (2018) Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents. New J Chem 42:17268–17278. https://doi.org/10.1039/C8NJ02495B

    Article  CAS  Google Scholar 

  55. Hu M, Wu J, Zhang Y, Qiu F, Yu Y (2011) Synthesis of polysubstituted 5-aminopyrimidines from α-azidovinyl ketones and amidines. Tetrahedron 67:2676–2680. https://doi.org/10.1016/j.tet.2011.01.062

    Article  CAS  Google Scholar 

  56. Shao Z, Pan Q, Chen J, Yu Y, Zhang G (2012) Synthesis of polysubstituted 5-aminopyrimidine-2 (1H)-thiones from vinyl azides and thiourea. Tetrahedron 68:6565–6568. https://doi.org/10.1016/j.tet.2012.05.057

    Article  CAS  Google Scholar 

  57. Peytam F, Adib M, Shourgeshty R, Rahmanian-Jazi M, Jahani M, Larijani B, Mahdavi M (2019) A one-pot and three-component synthetic approach for the preparation of asymmetric and multi-substituted 1, 4-dihydropyrazines. Tetrahedron Lett 60:151257–151262. https://doi.org/10.1016/j.tetlet.2019.151257

    Article  CAS  Google Scholar 

  58. Liu S, Chen W, Luo J, Yu Y (2014) [3 + 3] annulation of allylic phosphoryl-stabilized carbanions/phosphorus ylides and vinyl azides: a practice strategy for synthesis of polyfunctionalized anilines. Chem Commun 50:8539–8542. https://doi.org/10.1039/C4CC03462G

    Article  CAS  Google Scholar 

  59. Ismailova G, Mavlyanov S, Kamaev F (2012) Synthesis of structural fragments of natural flavonoids and flavolignans from 2-hydroxychalcones. Russ J Bioorg Chem 38:335–337. https://doi.org/10.1134/S1068162012030077

    Article  CAS  Google Scholar 

  60. Shao J, Liu X, Shu K, Tang P, Luo J, Chen W, Yu Y (2015) Tuning the annulation reactivity of vinyl azides and carbazates: a divergent synthesis of aza-pyrimidinones and imidazoles. Org Lett 17:4502–4505. https://doi.org/10.1021/acs.orglett.5b02180

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Sun G, Bi X (2016) Rhodium/silver-cocatalyzed transannulation of N-sulfonyl-1, 2, 3-triazoles with vinyl azides: divergent synthesis of pyrroles and 2 H-pyrazines. Chem Asian J 11:3018–3021. https://doi.org/10.1002/asia.201601164

    Article  CAS  PubMed  Google Scholar 

  62. Xie H, Yu JB, Ding MW (2011) Temperature-dependent regioselective synthesis of 1, 2, 4-triazino [2, 3-b] indazoles and 3H-1, 4-benzodiazepines by domino-staudinger/aza-wittig/isomerization reaction. Eur J Org Chem 2011:6933–6938. https://doi.org/10.1002/ejoc.201100710

    Article  CAS  Google Scholar 

  63. Dinda BK, Jana AK, Mal D (2012) Anionic [4 + 3] heteroannulation of 2-azidoacrylates: a modular synthesis of 2-benzazepin-1-ones. Chem Commun 48:3999–4001. https://doi.org/10.1039/C2CC30279A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira Ansari or Mohammad Mahdavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashrifi, Z., Mohammadi-Khanaposhtani, M., Larijani, B. et al. Vinylazides: versatile synthons and magical precursors for the construction of N-heterocycles. Mol Divers 25, 2533–2570 (2021). https://doi.org/10.1007/s11030-020-10106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10106-1

Keywords

Navigation