Skip to main content
Log in

Characters of tangent spaces at torus fixed points and 3d-mirror symmetry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let X be a Nakajima quiver variety and \(X'\) its 3d-mirror. We consider the action of the Picard torus \({\mathsf {K}}=\mathrm {Pic}(X)\otimes {\mathbb {C}}^{\times }\) on \(X'\). Assuming that \((X')^{{\mathsf {K}}}\) is finite, we propose a procedure for obtaining the \({\mathsf {K}}\)-character of the tangent spaces at the fixed points in terms of certain enumerative invariants of X known as vertex functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We believe that our main conjecture holds in full generality. We restrict the exposition to the quiver varieties for the sake of simplicity of the exposition.

  2. The choice of the cone \(C_{\text {eff}}(X)\) corresponds to the choice of the stability parameter for the Nakajima variety X.

  3. The term “symplectic duality”, describing the symmetry of this type is more common in mathematical literature. In this paper we call it 3d-mirror symmetry following the terminology of [2, 26, 27].

  4. See also the talk by A.Okounkov “Enumerative symplectic duality” at the MSRI workshop Structures in Enumerative Geometry in April 2018 for the first discussion of these ideas (available online).

  5. We may assume \(\hbar ^{1/2}\) exists by passing to the double cover of \({\mathsf {T}}\) if needed.

  6. To the best of the authors’ knowledge this is not proved.

References

  1. Aganagic, M., Frenkel, E., Okounkov, A.: Quantum \(q\)-Langlands correspondence. Trans. Moscow Math. Soc. 79, 1–83 (2018). https://doi.org/10.1090/mosc/278

    Article  MathSciNet  MATH  Google Scholar 

  2. Aganagic, M., Okounkov, A.: Elliptic stable envelopes. arXiv e-prints arXiv:1604.00423 (2016)

  3. Aganagic, M., Okounkov, A.: Quasimap counts and Bethe eigenfunctions. Moscow Math. J. 17(4), 565–600 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bullimore, M., Dimofte, T., Gaiotto, D.: The Coulomb Branch of 3d \({\cal{N}}=4\) Theories. arXiv e-prints arXiv:1503.04817 (2015)

  5. Cherkis, S.A.: Instantons on gravitons. Commun. Math. Phys. 306(2), 449–483 (2011). https://doi.org/10.1007/s00220-011-1293-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dinkins, H., Smirnov, A.: Quasimaps to zero-dimensional \(A_{\infty }\)-quiver varieties. to appear in International Mathematics Research Notices (2020).

  7. Gaiotto, D., Koroteev, P.: On three dimensional quiver gauge theories and integrability. JHEP 05, 126 (2013). https://doi.org/10.1007/JHEP05(2013)126

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gaiotto, D., Witten, E.: S-duality of boundary conditions in N=4 super Yang-Mills theory. Adv. Theor. Math. Phys. 13, 721–896 (2009). https://doi.org/10.4310/ATMP.2009.v13.n3.a5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Ginzburg, V.: Lectures on Nakajima’s quiver varieties. In: Geometric methods in representation theory. I, Sémin. Congr., vol. 24, pp. 145–219. Soc. Math. France, Paris (2012)

  11. Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nuclear Phys. B 492(1), 152–190 (1997). https://doi.org/10.1016/S0550-3213(97)80030-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Intriligator, K., Seiberg, N.: Mirror symmetry in three dimensional gauge theories. Phys. Lett. B 387(3), 513–519 (1996). https://doi.org/10.1016/0370-2693(96)01088-X

    Article  ADS  MathSciNet  Google Scholar 

  13. Kaledin, D.: Geometry and topology of symplectic resolutions. In: Algebraic geometry—Seattle 2005. Part 2, Proceedings of Symposia in Pure Mathematics, vol. 80, pp. 595–628. American Mathematical Society, Providence, RI (2009). https://doi.org/10.1090/pspum/080.2/2483948

  14. Koroteev, P., Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Quantum K-theory of Quiver Varieties and Many-Body Systems. arXiv e-prints arXiv:1705.10419 (2017)

  15. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology. arXiv e-prints arXiv:1211.1287 (2012)

  16. McGerty, K., Nevins, T.: Kirwan surjectivity for quiver varieties. Invent. Math. 212(1), 161–187 (2018). https://doi.org/10.1007/s00222-017-0765-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998). https://doi.org/10.1215/S0012-7094-98-09120-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18. American Mathematical Society, Providence, RI (1999). https://doi.org/10.1090/ulect/018

  19. Nakajima, H.: More lectures on Hilbert schemes of points on surfaces. In: Development of moduli theory—Kyoto 2013, Advanced Studies in Pure Mathematics, vol. 69, pp. 173–205. Mathematical society of Japan, Tokyo (2016)

  20. Nakajima, H., Takayama, Y.: Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type \(A\). arXiv e-prints arXiv:1606.02002 (2016)

  21. Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009). https://doi.org/10.1143/PTPS.177.105

    Article  ADS  MATH  Google Scholar 

  22. Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe ansatz. Nuclear Phys. B Proc. Suppl. 192(193), 91–112 (2009). https://doi.org/10.1016/j.nuclphysbps.2009.07.047

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. ArXiv: 1512.07363 (2015)

  24. Okounkov, A., Smirnov, A.: Quantum difference equation for Nakajima varieties. ArXiv: 1602.09007 (2016)

  25. Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Baxter Q-operator from quantum K-theory. arXiv e-prints arXiv:1612.08723 (2016)

  26. Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: 3d Mirror Symmetry and Elliptic Stable Envelopes. arXiv e-prints arXiv:1902.03677 (2019)

  27. Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: Three dimensional mirror self-symmetry of the cotangent bundle of the full flag variety. arXiv e-prints arXiv:1906.00134 (2019)

  28. Smirnov, A.: Elliptic stable envelope for Hilbert scheme of points in the plane. arXiv e-prints arXiv:1804.08779 (2018)

  29. Weekes, A., Nakajima, H.: Coulomb branches of quiver gauge theories with symmetrizers. arXiv e-prints arXiv:1907.06552 (2019)

Download references

Acknowledgements

This work is supported by the Russian Science Foundation under Grant 19-11-00062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunter Dinkins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A., Dinkins, H. Characters of tangent spaces at torus fixed points and 3d-mirror symmetry. Lett Math Phys 110, 2337–2352 (2020). https://doi.org/10.1007/s11005-020-01292-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01292-y

Keywords

Mathematics Subject Classification

Navigation