Skip to main content
Log in

Hybrid starch/silica films with improved mechanical properties

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Environmental concern has increased the research in development of biodegradable packaging. Although there are many reports about starch films, their physicochemical properties need to be improved, and the introduction of an inorganic compound is an alternative to be applied. However, there are few reports about the development of biodegradable hybrid organic–inorganic films for food packaging. Therefore, the preparation of biodegradable films was proposed by using sol–gel and casting techniques, based on starch and glycerol as plasticizers, with the incorporation of an alkoxide precursor containing silicon, TEOS (tetraethyl orthosilicate) in different concentrations. Morphological, thermal, optical, and mechanical properties, water solubility, swelling, and water vapor permeability were evaluated. The addition of TEOS was more efficient when it underwent pre-hydrolysis before incorporation into the film-forming solution, significantly interfering with the results of mechanical, optical, and barrier properties. The silica phase was uniformly incorporated into the polymer, presenting micrometric domains. The hybrid films produced have satisfactory properties for application as biodegradable packaging.

Highlights

  • The addition of silica moiety increased by up to 109% the tensile strength of hybrid films.

  • Other properties of the hybrid films were also improved with the addition of silica microdomains.

  • Better biodegradable film properties will open new possibilities for use like rigid package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Souza COD, Silva LT, Druzian JI (2012) Química Nova 35:262–267

    Article  Google Scholar 

  2. Daraba A (2008) J Environ Prot Ecol 9:652–664

    CAS  Google Scholar 

  3. Dhanapal A, Sasikala P, Lavanya R, Kavitha V, Yazhini G, Shakila Banu M (2012) Food Sci Qual Manag 3:9–17

    Google Scholar 

  4. Molavi H, Behfar S, Shariati MA, Kaviani M, Atarod S (2015) J Microbiol, Biotechnol Food Sci 4:456–461. https://doi.org/10.15414/jmbfs.2015.4.5.456-461

    Article  CAS  Google Scholar 

  5. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467–474. https://doi.org/10.1016/j.foodchem.2004.10.024

    Article  CAS  Google Scholar 

  6. Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) Carbohydr Polym 45:189–194. https://doi.org/10.1016/S0144-8617(00)00315-5

    Article  Google Scholar 

  7. Curvelo AAS, Carvalho AJF, Agnelli JAM (2001) Carbohydr Polym 45:189–194. https://doi.org/10.1016/S0144-8617(00)00314-3

    Article  Google Scholar 

  8. Müller CMO, Laurindo JB, Yamashita F (2009) Food Hydrocoll 23:1328–1333. https://doi.org/10.1016/j.foodhyd.2008.09.002

    Article  CAS  Google Scholar 

  9. Gutiérrez T, Tapia MS, Perez E, Fama L (2015) Food Hydrocoll 45:211–217. https://doi.org/10.1016/j.foodhyd.2014.11.017

    Article  CAS  Google Scholar 

  10. Bonelli CMC, Elzubair A, Suarez JCM (2005) Polímeros: Ciência e Tecnologia 15:256–260

    Article  CAS  Google Scholar 

  11. Zoppi RA, Nunes SP (1997) Polímeros: Ciência e Tecnologia 7:27–36

    Article  CAS  Google Scholar 

  12. Hallegot P, Hussler G, Jeanne-Rose V, Leroy F, Pincau P, Samain H (2016) J Sol–Gel Sci Technol 79:359–364. https://doi.org/10.1007/s109710163961z

    Article  CAS  Google Scholar 

  13. Atif H, Calabria-Holley J, Jiang Y, Lawrence M (2018) J Sol–Gel Sci Technol 86:187–197. https://doi.org/10.1007/s10971-018-4621-2

    Article  CAS  Google Scholar 

  14. Brinker CJ, Scherer GW (1989) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  15. Alfaya A, Kubota LT (2002) Quim Nova 25:835–841

    Article  CAS  Google Scholar 

  16. Embuscado Milda E, Huber Karry C (2009) Edible films and coatings for food applications. Ed. Springer, Nova York

  17. Versino F, Garcia AM (2014) Ind Crops Products 58:305. https://doi.org/10.1016/j.indcrop.2014.04.040

    Article  CAS  Google Scholar 

  18. AOAC (2005) Official methods of analysis. Association of Analytical Chemists, Washington DC

    Google Scholar 

  19. Jaramillo CM, Gonzalez Seligra P, Goyanes S, Bernal C, Fama L (2015) Starch 67:780. https://doi.org/10.1002/star.201500033

    Article  CAS  Google Scholar 

  20. ASTM (2009) Designation D882-09: Standard test method for tensile properties of thin plastic sheeting. Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  21. Mei J, Yuan Y, Wu Y, Li (2013) Int J Biol Macromolecules 57:17–2. https://doi.org/10.1016/j.ijbiomac.2013.03.003

    Article  CAS  Google Scholar 

  22. Sarantópoulos CIGL, Oliveira LM, Padula M, Coltro L, Alves RMV, Garcia EEC (2002) Embalagens plásticas flexíveis: principais polímeros e avaliação de propriedades. 1. ed. Campinas, CETEA/ITAL, p 267

  23. Cho SY, Rhee C (2004) LWT—Food Sci Technol 37:833–839. https://doi.org/10.1016/j.lwt.2004.03.009

    Article  CAS  Google Scholar 

  24. Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P (2010) Polym Degrad Stab 95:374–381. https://doi.org/10.1016/j.foodchem.2016.07.039

    Article  CAS  Google Scholar 

  25. Shimazu AA, Mali S, Grossmann MVE (2007) Semina: Ciências Agrárias 28:79–88

    CAS  Google Scholar 

  26. Basiak E, Debeaufort F, Lenart A (2015) Food Chem 195:56–63. https://doi.org/10.1016/j.foodchem.2015.04.098

    Article  CAS  Google Scholar 

  27. Souza AC, Benze R, Ferrão ES, Ditchfield C, Coelho ACV, Tadini CC (2012) LWT—Food Sci Technol 46:110–117. https://doi.org/10.1016/j.lwt.2011.10.018

    Article  CAS  Google Scholar 

  28. Barzegar H, Azizi MH, Barzegar M, Esfahani ZH (2014) Carbohydr Polym 110:26–31. https://doi.org/10.1016/j.carbpol.2014.03.092

    Article  CAS  Google Scholar 

  29. Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2012) Food Hydrocoll 27:175–184. https://doi.org/10.1016/j.foodhyd.2011.07.007

    Article  CAS  Google Scholar 

  30. Tang XZ, Alavi S, Herald TJ (2008) Cereal Chem 85:433–439. https://doi.org/10.1094/CCHEM-85-3-0433

    Article  CAS  Google Scholar 

  31. Tang S, Zou P, Xiong H, Tang H (2008b) Carbohydr Polym 72:521–526. https://doi.org/10.1016/j.carbpol.2007.09.019

    Article  CAS  Google Scholar 

  32. Xiong H, Tang S, Tang H, Zou P (2008) Carbohydr Polym 71:263–268. https://doi.org/10.1016/j.carbpol.2007.05.035

    Article  CAS  Google Scholar 

  33. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP (2011) Food Hydrocoll 25:1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  34. Sayeda MIbrahim (2010) J Appl Polym Sci 119:685–692. https://doi.org/10.1002/app.32732

    Article  CAS  Google Scholar 

  35. Pagno C, Costa TMH, Menezes EW, Benvenutti EV, Hertz PF, Matte CR, Tosati JV, Monteiro AR, Rios AO, Flôres SH (2015) Food Chem 3:755–762. https://doi.org/10.1016/j.foodchem.2014.10.068

    Article  CAS  Google Scholar 

  36. Sanyang ML, Jawaid M, Sapuan SM, Ishak MR, Sahari J (2015) Polymers. 7:1106–1124. https://doi.org/10.3390/polym7061106

    Article  CAS  Google Scholar 

  37. Lee JH, Jung D, Hong CE, Rhee KY, Advani SG (2005) Compos Sci Technol 65:1996–2002. https://doi.org/10.1016/j.compscitech.2005.03.015

    Article  CAS  Google Scholar 

  38. Voon HC, Bhat R, Easa AM, Liong MT, Karim AA (2012) Food Bioprocess Technol 5:1766–1774. https://doi.org/10.1007/s11947-010-0461-y

    Article  CAS  Google Scholar 

  39. Moraes JO, Muller CMO, Laurindo JB (2011) Food Sci Technol Int 18:35–45ez45. https://doi-org.ez45.periodicos.capes.gov.br/10.1177/1082013211427622

  40. Zavareze ER, Pinto VZ, Klein B, El Halal SLM, Elias MC, Prentice-Hernández C, Dias ARG (2012) Food Chem 132:344–350. https://doi.org/10.1016/j.foodchem.2011.10.090

    Article  CAS  Google Scholar 

  41. Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA (2012) Fibres Text East Eur 2:21–24

    Google Scholar 

  42. Zhang Y, Rempel C, Liu Q (2014) Crit Rev Food Sci Nutr 54:1353–1370

    Article  CAS  Google Scholar 

  43. Sadegh-Hassani F, Nafchi AM (2014) Int J Biol Macromolecules 67:458–462. https://doi.org/10.1016/j.ijbiomac.2014.04.009

    Article  CAS  Google Scholar 

  44. Coutinho FMB, Mello IL, Santa Maria LC (2003) Polímeros: Ciência e Tecnologia 13:1–13

    Article  CAS  Google Scholar 

  45. Callister Jr. WD (2006) Fundamentos da Ciência e Engenharia dos Materiais. LTC, Rio de Janeiro

    Google Scholar 

  46. Mali S, Grossmann MVE, García MA, Martino MM, Zaritzky NE (2006) J Food Eng 75(4):453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031

    Article  CAS  Google Scholar 

  47. Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) J Cereal Sci 51:213–219. https://doi.org/10.1016/j.jcs.2009.11.014

    Article  CAS  Google Scholar 

  48. Cuq B, Gontard N, Cuq JL, Guilbert S (1997) J Agric Food Chem 45:622–626

    Article  CAS  Google Scholar 

  49. Park HW, Lee WK, Park CY, Cho WJ, Ha C (2003) J Mater Sci 38:909–915

    Article  CAS  Google Scholar 

  50. Chen B, Evans JRG (2005) Carbohydr Polym 61:455–463. https://doi.org/10.1016/j.carbpol.2005.06.020

    Article  CAS  Google Scholar 

  51. Sothornvit R, Krochta JM (2005) Plasticizers in edible films and coatings. In: Han JH (ed) Innovations in food packaging. Academic Press, London, UK, p 403–33

    Chapter  Google Scholar 

  52. Kampeerapappun P, Ahtong D, Pentrakoon D, Srikulkit K (2007) Carbohydr Polym 67:155–163. https://doi.org/10.1016/j.carbpol.2006.05.012

    Article  CAS  Google Scholar 

  53. Wu Y, Geng F, Chang PR, Yu J, Ma X (2009) Carbohydr Polym 76:299–304. https://doi.org/10.1016/j.carbpol.2008.10.031

    Article  CAS  Google Scholar 

  54. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Food Bioprocess Technol 5:2058–2076. https://doi.org/10.1007/s11947-012-0835-4

    Article  CAS  Google Scholar 

  55. Shellhammer TH, Krochta JM (1997) Edible coating and film barriers. In: Gunstone FD, Padley FB (eds), Lipids-industrial applications and technology, Marcel Dekker: New York, p 453–479

    Chapter  Google Scholar 

  56. Mbey JA, Hoppe., Thomas F (2012) Carbohydr Polym 88:213–222. https://doi.org/10.1016/j.carbpol.2011.11.091

    Article  CAS  Google Scholar 

  57. Slavutsky AM, Bertuzzi MA, Armada M (2012) Braz J Food Technol 15:208–218. https://doi.org/10.1590/S1981-67232012005000014

    Article  CAS  Google Scholar 

  58. Machado BAS, Reis JHO, Silva JB, Da, Cruz LS, Nunes IL, Pereira FV, Druzian JI (2014) Química Nova 37:1275–1282. https://doi.org/10.5935/0100-4042.20140220

    Article  CAS  Google Scholar 

  59. Lehninger AL, Nelson DL, Cox MM (2000) Princípios de Bioquímica. Tradução de W. R. Loodi, e A. A. Simões. São Paulo: Sarvier, Tradução de: Principles of biochemistry

  60. Dang KM, Yoksan R (2015) Carbohydr Polym 115:575–581. https://doi.org/10.1016/j.carbpol.2014.09.005

    Article  CAS  Google Scholar 

  61. Suppakul P, Chalernsook B, Ratisuthawat B, Prapasitthi S, Munchukangwan N (2013) LWT Food Sci Technol 50:290–297. https://doi.org/10.1016/j.lwt.2012.05.013

    Article  CAS  Google Scholar 

  62. Raabe J, Fonseca AS, Bufalino L, Ribeiro C, Martins MA, Marconcini JM, Mendes LM, Tonoli GHD (2015) J Nanomater 9. https://doi.org/10.1155/2015/493439

    Article  Google Scholar 

  63. Mura S, Corrias F, Stara G, Piccinini M, Secchi N, Marongiu D, Innocenzi P, Irudayaraj J, Greppi GF (2011) J Food Sci 76(7):54–60. https://doi.org/10.1111/j.1750-3841.2011.02295.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Brazilian agencies Fundação de Amparo à Pesquisa do Estado do RS (FAPERGS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Maria Haas Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horst, C., Pagno, C.H., Flores, S.H. et al. Hybrid starch/silica films with improved mechanical properties. J Sol-Gel Sci Technol 95, 52–65 (2020). https://doi.org/10.1007/s10971-020-05234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05234-x

Keywords

Navigation