Skip to main content
Log in

Influence of Ti doping on the microstructural and electrochromic properties of dip-coated nanocrystalline V2O5 thin films

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The nanocrystalline V2O5 thin films were prepared via a dip-coating method by controlled hydrolytic polycondensation of the vanadium (V) oxytriisopropoxide (VO(OC3H7)3) in isopropanol. For Ti doping, titanium (IV) isopropoxide (Ti(OC3H7)4) was used. The as-deposited films after thermal treatment at 500 °C under ambient air for 30 min were subjected to characterizations for their structural, morphological, and electrochromic properties. The X-ray diffraction (XRD) analyses of the films confirm an orthorhombic phase of vanadium pentaoxide (PDF # 41-1426), which is also supported by Fourier transform infrared (FTIR) analyses. The analyses of electrochromic properties of the films divulge that the 5 at% Ti-doped film has the fast switching time (coloration time: 0.59 s and bleaching time: 0.42 s), high net charge density and good electrochromic reversibility. The Nyquist impedance plots have been evaluated by fit and simulation analysis using Nova software, taking into account an equivalent electrical circuit model.

The 5 at% Ti-doped V2O5 film has been found to be a fast color-switching film with the optimum switching speed that makes it a potential candidate for electrochromic device applications. Photographs of the film (a) as-deposited, (b) colored state, and (c) bleached state.

Highlights

  • Post-heat treated films possess an orthorhombic phase of V2O5.

  • Upon Ti doping, the film morphology changes to nanorods.

  • The roughness of the film decreases upon Ti doping.

  • 5 at% Ti-doped film has the fast switching response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Beke S (2011) A review of the growth V2O5 films 1885 to 2010. Thin Solid Films 519:1761–1771

    Article  CAS  Google Scholar 

  2. Livage J (1998) Synthesis of polyoxovanadates via “chimie douce”, Coordin. Chem Rev 178:999–1018

    Google Scholar 

  3. Ivanovskaya VV, Enyashin AN, Sofronov AA, Makurin YN, Medvedeva NI, Ivanovskii AL (2003) Electronic properties of single-walled V2O5 nanotubes. Solid State Commun 126:489–493

    Article  CAS  Google Scholar 

  4. Chen R-S, Wang W-C, Chan C-H, Hsu H-P, Tien L-C, Chen Y-J (2013) Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition. Nanoscale Res Lett 8:443

    Article  CAS  Google Scholar 

  5. Bouzidi A, Benramdane N, Nakrela A, Mathieu C, Khelifa B, Desfeux R, Costa ADa (2002) First synthesis of vanadium oxide thin films by spray pyrolysis technique. Mater Sci Eng B 95:141–147

    Article  Google Scholar 

  6. Avellaneda CO (2007) Electrochromic performance of sol-gel deposited V2O5: Ta films. Mater Sci Eng B 138:118–122

    Article  CAS  Google Scholar 

  7. Ceccato R, Carturan G, Decker F, Artuso F (2003) Sol-gel synthesis of vanadate-based thin films as counter electrodes in electrochromic devices. J Sol-Gel Sci Technol 26:1071–1074

    Article  CAS  Google Scholar 

  8. Alsawafta M, Almoabadi A, Badilescu S, Truong V-V (2015) Improved electrochromic Properties of vanadium pentoxide nanorods prepared by thermal treatment of sol-gel dip-coated thin films. J Electrochem Soc 162:H466–H472

    Article  CAS  Google Scholar 

  9. Eren E, Karaca GY, Alver C, Oksuz AU (2016) Fast electrochromic response for RF-magnetron sputtered electrospun V2O5 mat. Eur Polym J 84:345–354

    Article  CAS  Google Scholar 

  10. Tang Y, Rui X, Zhang Y, Lim TM, Dong Z, Hng HH, Chen X, Yan Q, Chen Z (2013) Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J Mater Chem A 1:82–88

    Article  CAS  Google Scholar 

  11. Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K (2012) V2O5 hollow nanospheres: A lithium intercalation host with good rate capability and capacity retention. J Electrochem Soc 159:A618–A621

    Article  CAS  Google Scholar 

  12. Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem A 3:1828–1832

    Article  CAS  Google Scholar 

  13. Wei Y, Zhu J, Wang G (2014) High-specific-capacitance supercapacitor based on vanadium oxide nanoribbon. IEEE Trans Appl Supercond 24:7000204

    Article  Google Scholar 

  14. Tamang R, Varghese B, Tok ES, Mhaisalkar S, Sow CH (2012) Sub-bandgap energy photoresponse of individual V2O5 nanowires. Nanosci Nanotechnol Lett 4:716–719

    Article  CAS  Google Scholar 

  15. Yan B, Liao L, You Y, Xu X, Zheng Z, Shen Z, Ma J, Tong L, Yu T (2009) Single crystalline V2O5 ultralong nanoribbon waveguides. Adv Mater 21:2436–2440

    Article  CAS  Google Scholar 

  16. Lu J, Hu M, Tian Y, Guo C, Wang C, Guo S, Liu Q (2012) Fast visible light photoelectric switch based on ultralong single crystalline V2O5 nanobelt. Opt Express 20:6974–6979

    Article  CAS  Google Scholar 

  17. Gould RD, Kasap S, Ray AK (2017) Thin Films. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer Handbooks. Springer, Switzerland

    Google Scholar 

  18. Knapp CE, Carmalt CJ (2016) Solution based CVD of main group materials. Chem Soc Rev 45:1036–1064

    Article  CAS  Google Scholar 

  19. Kumar A, Prajapati CS, Sahay PP (2019) Modification in the microstructural and electrochromic properties of spray-pyrolysed WO3 thin films upon Mo doping. J Sol-Gel Sci Technol 90:281–295

    Article  CAS  Google Scholar 

  20. Fujita Y, Miyazaki K, Tatsuyama C (1985) Physical investigations on electron-beam evaporated vanadium pentoxide films. Jpn J Appl Phys 24:1082–1086

    Article  CAS  Google Scholar 

  21. Chen W, Kaneko Y (2003) Electrochromism of vanadium oxide films doped by rare-earth (Pr, Nd, Sm, Dy) oxides. J Electroanal Chem 559:83–86

    Article  CAS  Google Scholar 

  22. Lim SP, Long JD, Xu S, Ostrikov K (2007) Nanocrystalline vanadium oxide films synthesized by plasma-assisted reactive rf sputtering deposition. J Phys D: Appl Phys 40:1085–1090

    Article  CAS  Google Scholar 

  23. Panagopoulou M, Vernardou D, Koudoumas E, Tsoukalas D, Raptis YS (2017) Oxygen and temperature effects on the electrochemical and electrochromic properties of rf-sputtered V2O5 thin films. Electrochim Acta 232:54–63

    Article  CAS  Google Scholar 

  24. Sinha SK (2019) Effect of temperature on structural, optical and electrical properties of pulsed-laser deposited W-doped V2O5 thin films. Superlattices Microstruct 125:88–94

    Article  CAS  Google Scholar 

  25. Shtmizu Y, Nagase K, Miura N, Yamazoe N (1992) Electrochromic properties of spin-coated V2O5 thin films. Solid State lomcs 53-56:490–495

    Google Scholar 

  26. Qiu D, Wu J, Liang L, Zhang H, Cao H, Yong W, Tian T, Gao J, Zhuge F (2018) Structural and electrochromic properties of undoped and Mo-doped V2O5 thin films by a two-electrode electrodeposition. J Nanosci Nanotechnol 18:7502–7507

    Article  CAS  Google Scholar 

  27. Moura EA, Cholant CM, Balboni RDC, Westphal TM, Lemos RMJ, Azevedo CF, Gündel A, Flores WH, Gomez JA, Ely F, Pawlicka A, Avellaneda CO (2018) Electrochemical properties of thin films of V2O5 doped with TiO2. J Phys Chem Solids 119:1–8

    Article  CAS  Google Scholar 

  28. Vasanth Raj D, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Effect of annealing and electrochemical properties of sol–gel dip coated nanocrystalline V2O5 thin films. Mater Sci Semicond Process 16:256–262

    Article  CAS  Google Scholar 

  29. Yu DM, Zhang ST, Liu DW, Zhou XY, Xie SH, Zhang QF, Liu YY, Cao GZ (2010) Effect of manganese doping on Li-ion intercalation properties of V2O5 films. J Mater Chem 20:10841–10846

    Article  CAS  Google Scholar 

  30. Loi MR, Moura EA, Westphal TM, Balboni RDC, Gündelc A, Flores WH, Pereira MB, Santos MJL, Santos JFL, Pawlicka A, Avellaneda CO (2019) Impact of Zr precursor on the electrochemical properties of V2O5 sol-gel films. J Electroanal Chem 839:67–74

    Article  CAS  Google Scholar 

  31. Liu Y, Jia C, Wan Z, Weng X, Xie J, Deng L (2015) Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol Energy Mater Sol Cells 132:467–475

    Article  CAS  Google Scholar 

  32. Najdoski M, Koleva V, Samet A (2014) Effect of deposition conditions on the electrochromic properties of nanostructured thin films of ammonium intercalated vanadium pentoxide xerogel. J Phys Chem C 118:9636–9646

    Article  CAS  Google Scholar 

  33. Coustier F, Hil J, Owens BB, Passerini S, Smyrl WH (1999) Doped vanadium oxides as host materials for lithium intercalation. J Electrochem Soc 146:1355–1360

    Article  CAS  Google Scholar 

  34. Sahana MB, Sudakar C, Thapa C, Naik VM, Auner GW, Naik R, Padmanabhan KR (2009) The effect of titanium on the lithium intercalation capacity of V2O5 thin films. Thin Solid Films 517:6642–6651

    Article  CAS  Google Scholar 

  35. Özer N, Sabuncu S, Cronin J (1999) Electrochromic properties of sol-gel deposited Ti-doped vanadium oxide film. Thin Solid Films 338:201–206

    Article  Google Scholar 

  36. Salek G, Bellanger B, Mjejri I, Gaudon M, Rougier A (2016) Polyol synthesis of Ti‑V2O5 nanoparticles and their use as electrochromic films. Inorg Chem 55:9838–9847

    Article  CAS  Google Scholar 

  37. Tang X, Yan X (2017) Dip-coating for fibrous materials: mechanism, methods and applications. J Sol-Gel Sci Technol 81:378–404

    Article  CAS  Google Scholar 

  38. Brinker CJ, Scherer GW (2013) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston

  39. Özer N (1997) Electrochemical properties of sol-gel deposited vanadium pentaoxide films. Thin Solid Films 305:80–87

    Article  Google Scholar 

  40. Williamson GK, Smallman RC (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag 1:34–46

    Article  CAS  Google Scholar 

  41. Sinha SK (2019) Effect of temperature on structural, optical and electrical properties of pulsed-laser deposited W-doped V2O5 thin films. Superlattices Microstruct 125:88–94

    Article  CAS  Google Scholar 

  42. Vijayakumar Y, Mani GK, Ramana Reddy MV, John Bosco BR (2015) Nanostructured flower like V2O5 thin films and its room temperature sensing characteristics. Ceram Int 41:2221–2227

    Article  CAS  Google Scholar 

  43. Lee JM, Hwang H-S, Cho W-H, B.-W. Cho B-W, K.Y. Kim KY (2004) Effect of silver co-sputtering on amorphous V2O5 thin-films for microbatteries. J. Power Sources 136:122–131

    Article  CAS  Google Scholar 

  44. Jin A, Chen W, Zhu Q, Yang Y, Volkov VL, Zakharova GS (2008) Electrical and electrochemical characterization of poly (ethylene oxide)/V2O5 xerogel electrochromic films. Solid State Ionics 179:1256–1262

    Article  CAS  Google Scholar 

  45. Najdoski M, Koleva V, Samet A (2014) Effect of deposition conditions on the electrochromic properties of nanostructured thin films of ammonium intercalated vanadium pentoxide xerogel. J Phys Chem C 118:9636–9646

    Article  CAS  Google Scholar 

  46. Kang W, Yan C, Wang X, Foo CY, Tan AWM, Chee KJZ, Lee PS (2014) Green synthesis of nanobelt-membrane hybrid structured vanadium oxide with high electrochromic contrast. J Mater Chem C 2:4727–4732

    Article  CAS  Google Scholar 

  47. Wei Y, Zhou J, Zheng J, Xu C (2015) Improved stability of electrochromic devices using Ti-doped V2O5 film. Electrochim Acta 166:277–284

    Article  CAS  Google Scholar 

  48. Benmouss M, Outzourhit A, Jourdani R, Bennouna A, Ameziane EL (2003) Structural, optical and electrochromic properties of sol–gel V2O5 thin films. Active Passive Electron Compon 26:245–256

    Article  Google Scholar 

  49. Mundinamani S, Rabinal M (2014) Cyclic voltammetric studies on the role of electrode, electrode surface modification and electrolyte solution of an electrochemical cell. J Appl Chem 7:45–52

    Google Scholar 

  50. Patil CE, Tarwal NL, Jadhav PR, Shinde PS, Deshmukh HP, Karanjkar MM, Moholkar AV, Gang MG, Kim JH, P.S. Patil PS (2014) Electrochromic performance of the mixed V2O5-WO3 thin films synthesized by pulsed spray pyrolysis technique. Curr Appl Phys 14:389–395

    Article  Google Scholar 

  51. Kumar A, Prajapati CS, Sahay PP (2019) Results on the microstructural, optical and electrochromic properties of spray-deposited MoO3 thin films by the influence of W doping. Mater Sci Semicond Process 104:104668

    Article  CAS  Google Scholar 

  52. Mukherjee R, Sahay PP (2016) Improved electrochromic performance in sprayed WO3 thin films upon Sb doping. J Alloys Compd 660:336–341

    Article  CAS  Google Scholar 

  53. Guan S, Wei Y, Zhou J, Zheng J, Xu C (2016) A method for preparing manganese-doped V2O5 films with enhanced cycling stability. J Electrochem Soc 163:541–545

    Article  CAS  Google Scholar 

  54. Sivakumar R, Shanthakumari K, Thayumanavan A, Jayachandran M, Sanjeeviraja C (2007) Coloration and bleaching mechanism of tungsten oxide thin films in different electrolytes. Surf Eng 23:373–379

    Article  CAS  Google Scholar 

  55. Amorin LH, Martins LdS, Urbano A (2019) Commitment between roughness and crystallite size in the vanadium oxide thin film opto-electrochemical properties. Mater Res 22:e20180245. https://doi.org/10.1590/1980-5373-mr-2018-0245

    Article  CAS  Google Scholar 

  56. Usha KS, Sivakumar R, Sanjeeviraja C, Sathe V, Ganesan V, Wang TY (2016) Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed. RSC Adv 6:79668–79680

    Article  CAS  Google Scholar 

  57. Kumar A, Sahay PP (2019) Microstructural, optical and electrochromical properties of W-doped Nb2O5 thin films prepared by dip-coating process using sols obtained by the chloroalkoxide route. J Mater Sci Mater Electron 30:17999–18014

    Article  CAS  Google Scholar 

  58. Westphal TM, Cholant CM, Azevedo CF, Moura EA, da Silva DL, Lemos RMJ, Pawlicka A, Gündel A, Flores WH, Avellaneda CO (2017) Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films. J Electroanal Chem 790:50–56

    Article  CAS  Google Scholar 

  59. Ma X, Lu S, Wan F, Hu M, Wang Q, Zhu Q, Zakharova GS (2016) Synthesis and electrochromic characterization of graphene/V2O5/MoO3 nanocomposite films. ECS J Solid State Sci Technol 5:P572–P577

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Centre for Interdisciplinary Research, MNNIT Allahabad, India for providing XRD and UV–Vis measurements; Advanced Center for Materials Science, IIT Kanpur, India for FESEM and EDS; and Department of Materials and Metallurgical Engineering, IIT Kanpur, India for AFM characterization. They would wish to further express their gratitude to Director, MNNIT Allahabad, India, for providing financial support under the project, Third Phase of Technical Education Quality Improvement Programme (referred to as TEQIP-III), Ministry of Human Resource Development, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sahay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sahay, P.P. Influence of Ti doping on the microstructural and electrochromic properties of dip-coated nanocrystalline V2O5 thin films. J Sol-Gel Sci Technol 95, 34–51 (2020). https://doi.org/10.1007/s10971-020-05298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05298-9

Keywords

Navigation