Skip to main content
Log in

Direct inkjet printing of mullite nano-ribbons from the sol–gel precursor

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bio-inspired ceramics, that can overcome the brittleness of ceramics, require building blocks with thickness of a few hundred nanometers. It is extremely challenging to precisely fabricate the building blocks for the bio-inspired ceramics. In this paper, we demonstrate the processing of dense mullite nano-ribbons, using the sol–gel inkjet printing method with post-heat treatment. These nano-ribbons had precisely controllable dimensions of sub-micrometer thickness and width of a few hundred of micrometers. A novel single-phase ink from the water-based mullite sol–gel precursor was developed that ensured inkjet printability and low-temperature formation of pure mullite phase. One of the greatest challenges was how to achieve uniform track from such inks, because the sol–gel inks had non-zero receding contact angles with the substrate. According to previous theoretical studies, the ink track would eventually become discrete beads. However, we found that solvent-evaporation-induced gelation played an important role in the stability of the printed lines. Taking advantage of the solvent evaporation and sol–gel transition upon substrate heating, we were able to print stable and continuous gel lines. After firing these printed lines at 1000 °C, the pure mullite phase without any undesirable intermediate phases was achieved. The printed lines and dots retained their shapes during firing. It is shown that the crack-free mullite nano-ribbons of the thickness ranging between ~90 and ~200 nm can be printed directly on substrates.

Highlights

  • Dense and crack free mullite nano ribbons were inkjet-printed using the sol-gel inks.

  • A novel single-phase ink from water-based mullite sol-gel precursor was developed that ensured inkjet printability and low-temperature formation of pure mullite phase.

  • Stable and countinuous gel lines was printed by takng advantage of the solvent evaporation and sol-gel transition upon substrate heating, which has not been predicted by theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520

    Article  CAS  Google Scholar 

  2. Studart AR (2014) Bioinspired ceramics: turning brittleness into toughness. Nat Mater 13(5):433–435

    Article  CAS  Google Scholar 

  3. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–822

    Article  CAS  Google Scholar 

  4. Deckers J, Vleugels J, Kruthl JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 5(4):245–260

    Google Scholar 

  5. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754

    Article  CAS  Google Scholar 

  6. Eckel ZC, Zhou CY, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA (2016) 3D PRINTING additive manufacturing of polymer-derived ceramics. Science 351(6268):58–62

    Article  CAS  Google Scholar 

  7. Chen ZY, Song X, Lei LW, Chen XY, Fei CL, Chiu CT, Qian XJ, Ma T, Yang Y, Shung K, Chen Y, Zhou QF (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86

    Article  Google Scholar 

  8. Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1(1):113–123

    Article  CAS  Google Scholar 

  9. Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609

    Article  CAS  Google Scholar 

  10. Zocca A, Colombo P, Gomes CM, Gunster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98(7):1983–2001

    Article  CAS  Google Scholar 

  11. Sachs E, Cima M, Williams P, Brancazio D, Cornie J (1992) Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Eng Ind 114(4):481–488

    Article  Google Scholar 

  12. Zhao XL, Evans JRG, Edirisinghe MJ, Song JH (2002) Direct ink-jet printing of vertical walls. J Am Ceram Soc 85(8):2113–2115

    Article  CAS  Google Scholar 

  13. Dou R, Wang TM, Guo YS, Derby B (2011) Ink-jet printing of zirconia: coffee staining and line stability. J Am Ceram Soc 94(11):3787–3792

    Article  CAS  Google Scholar 

  14. Oh Y, Yoon HG, Lee SN, Kim HK, Kim J (2012) Inkjet-printing of TiO2 co-solvent ink: from uniform ink-droplet to TiO2 photoelectrode for dye-sensitized solar cells. J Electrochem Soc 159(1):B35–B39

    CAS  Google Scholar 

  15. Reis N, Ainsley C, Derby B (2005) Viscosity and acoustic behavior of ceramic suspensions optimized for phase-change ink-jet printing. J Am Ceram Soc 88(4):802–808

    Article  CAS  Google Scholar 

  16. Wang TM, Derby B (2005) Ink-jet printing and sintering of PZT. J Am Ceram Soc 88(8):2053–2058

    Article  CAS  Google Scholar 

  17. Seerden KAM, Reis N, Evans JRG, Grant PS, Halloran JW, Derby B (2001) Ink-jet printing of wax-based alumina suspensions. J Am Ceram Soc 84(11):2514–2520

    Article  CAS  Google Scholar 

  18. Hahn H, Logas J, Averback RS (1990) Sintering characteristics of nanocrystalline TiO2. J Mater Res 5(3):609–614

    Article  CAS  Google Scholar 

  19. Luan W, Gao L, Guo J (1999) Size effect on dielectric properties of fine-grained BaTiO3 ceramics. Ceram Int 25(8):727–729

    Article  CAS  Google Scholar 

  20. Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. New York, Academic Press

  21. Chen ZX, Zhang Z, Tsai CC, Kornev K, Luzinov I, Fang MH, Peng F (2015) Electrospun mullite fibers from the sol-gel precursor. J Sol-Gel Sci Technol 74(1):208–219

    Article  CAS  Google Scholar 

  22. Chen ZX, Burtovyy R, Kornev K, Luzinov I, Xu D, Peng F (2016) The effect of polymer additives on the critical thicknesses of mullite thin films obtained from the monophasic sol-gel precursors. J Sol-Gel Sci Technol 80(2):285–296

    Article  CAS  Google Scholar 

  23. Chen ZX, Burtovyy R, Kornev KG, Luzinov I, Peng F (2017) Dense and crack-free mullite films obtained from a hybrid sol-gel/dip-coating approach. J Mater Res 32(9):1665–1673

    Article  CAS  Google Scholar 

  24. Chen ZX, Gu Y, Aprelev P, Kornev K, Luzinov I, Chen J, Peng F (2016) Mullite-nickel magnetic nanocomposite fibers obtained from electrospinning followed by thermal reduction. J Am Ceram Soc 99(5):1504–1511

    Article  CAS  Google Scholar 

  25. Kanzaki S, Tabata H, Kumazawa T, Ohta S (1985) Sintering and mechanical properties of stoichiometric mullite. J Am Ceram Soc 68(1):C6–C7

    Article  CAS  Google Scholar 

  26. Atkinson A, Doorbar J, Hudd A, Segal DL, White PJ (1997) Continuous ink-jet printing using sol-gel “ceramic” inks. J Sol-Gel Sci Technol 8(1–3):1093–1097

    CAS  Google Scholar 

  27. Chouiki M, Schoeftner R (2011) Inkjet printing of inorganic sol-gel ink and control of the geometrical characteristics. J Sol-Gel Sci Technol 58(1):91–95

    Article  CAS  Google Scholar 

  28. Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74(10):2343–2358

    Article  CAS  Google Scholar 

  29. Kriven W, Palko J, Sinogeikin S, Bass JD, Sayir A, Brunauer G, Boysen H, Frey F, Schneider J (1999) High temperature single crystal properties of mullite. J Eur Ceram Soc 19(13–14):2529–2541

    Article  CAS  Google Scholar 

  30. Dokko PC, Pask JA, Mazdiyasni KS (1977) High-temperature mechanical-properties of mullite under compression. J Am Ceram Soc 60(3–4):150–155

    Article  CAS  Google Scholar 

  31. Chen ZX, Gu Y, Zhang Z, Kornev KG, Luzinov I, Peng F (2015) Measuring flexural rigidity of mullite microfibers using magnetic droplets. J Appl Phys 117(21):214304

    Article  Google Scholar 

  32. Derby B (2011) Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc 31(14):2543–2550

    Article  CAS  Google Scholar 

  33. Stringer J, Derby B (2010) Formation and stability of lines produced by inkjet printing. Langmuir 26(12):10365–10372

    Article  CAS  Google Scholar 

  34. Davis SH (1980) Moving contact lines and rivulet instabilities.1. The static rivulet. J Fluid Mech 98:225–242

    Article  Google Scholar 

  35. Schiaffino S, Sonin AA (1997) Formation and stability of liquid and molten beads on a solid surface. J Fluid Mech 343:95–110

    Article  Google Scholar 

  36. Duineveld PC (2003) The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J Fluid Mech 477:175–200

    Article  Google Scholar 

  37. Benilov E (2009) On the stability of shallow rivulets. J Fluid Mech 636:455–474

    Article  Google Scholar 

  38. Hong Y, Chen Z, Trofimov AA, Lei J, Chen J, Yuan L, Zhu W, Xiao H, Xu D, Jacobsohn LG (2017) Direct inkjet printing of miniaturized luminescent YAG: Er3+ from sol-gel precursor. Opt Mater 68:11–18

    Article  CAS  Google Scholar 

  39. Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5):2224–2231

    Article  CAS  Google Scholar 

  40. Gu Y, Chen Z, Borodinov N, Luzinov I, Peng F, Kornev KG (2014) Kinetics of evaporation and gel formation in thin films of ceramic precursors. Langmuir 30(48):14638–14647

    Article  CAS  Google Scholar 

  41. Kozuka H, Kajimura M (2000) Single-step dip coating of crack-free BaTiO3 films >1 mu m thick: effect of poly(vinylpyrrolidone) on critical thickness. J Am Ceram Soc 83(5):1056–1062

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the funding support from NIH: SC TRIMH COBRE 1P20GM130451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Chen, Z., Lei, J. et al. Direct inkjet printing of mullite nano-ribbons from the sol–gel precursor. J Sol-Gel Sci Technol 95, 66–76 (2020). https://doi.org/10.1007/s10971-020-05301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05301-3

Keywords

Navigation