Skip to main content
Log in

Simulation of Discharge Characteristics for the Plasma Etching of Large Area SiO2 Substrates

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The electron density distribution and average electron temperature distribution in reactive ion etching (RIE) chamber are of great significance for the ionization and excitation reaction rate. The uniformity of radial distributions of the electron density and average electron temperature in the discharge chamber greatly affects the uniformity of the etching, especially the plasma etching of large area SiO2 substrates. We study the effects of discharge conditions (including power and pressure) on the electron density and average electron temperature of plasma-etched 400 mm SiO2 substrates in the reactive ion etching chamber; the simulation results show that the allowable major discharge conditions strongly affect the characteristics of plasma in the large area reactive ion etching chamber. Specifically, with increase in the power both the electron density and average electron temperature increase, being accompanied by deteriorating uniformity of their radial distributions. As the pressure increases, the electron density increases but average electron temperature decreases, being accompanied by deteriorating uniformity of their radial distributions. These methods and conclusions can provide reference for the improvement of cavity structure and large area RIE equipment designing and selection of the process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Neauport, X. Ribeyre, J. M. Daurios, et al., Appl. Opt., 42, 2377 (2003).

    Article  ADS  Google Scholar 

  2. Z. Zhao, H. Zhao, F. Gu, et al., Opt. Express, 22, 5512 (2014).

    Article  ADS  Google Scholar 

  3. P. D. Atcheson, J. Domber, K. Whiteaker, et al. “MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes,” Talk at the Space Telescopes and Instrumentation Conference (2012).

  4. J. L. Domber, P. D. Atcheson, and J. Kommers, “MOIRE: Ground test bed results for a large membrane telescope,” Talk at the Spacecraft Structures Conference (2014).

  5. P. Atcheson, J. Domber, K. Whiteaker, et al., “MOIRE: Fround demonstration of a large aperture diffractive transmissive telescope,” in: Astronomical Telescopes Instrumentation, SPIE (2014).

  6. “Early J Solar Sail – Fresnel Zone Plate Lens for a Large Space Based Telescope” Talk at the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2002).

  7. S. Azimi, A. Sandoughsaz, and S. Mohajerzadeh, J. Microelectr. Mech. Sys., 20, 353 (2011).

    Article  Google Scholar 

  8. J. Vukusic, J. Bengtsson, M. Ghisoni, et al., Appl. Opt., 39, 398 (2000).

    Article  ADS  Google Scholar 

  9. G. E. Jie, L. Xuan, Y. I. Yang, et al., Surface Rev. & Lett., 21, 711 (2014).

    Google Scholar 

  10. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Material Processing, 2nd ed., Wiley, New York (2005).

    Book  Google Scholar 

  11. W. Yang, X. P. Li, H. X. Xia, et al., Chin. J. Vacuum Sci. Technol., 35, 639 (2015) [in Chinese].

  12. C. Jia, L. Ji, Z. Yu, et al., J. Semiconductors, 31, 19 (2010).

    Google Scholar 

  13. K. Morikawa, K. Matsushita, and T. Tsukahara, Analyt. Sci., 33, 1453 (2017).

    Article  Google Scholar 

  14. V. Georgieva and A. Bogaerts, J. Appl. Phys., 98, 3048 (2005).

    Article  Google Scholar 

  15. Y. S. Liang, Y. R. Zhang, and Y. N. Wang, Chin. Phys. B, 25, 244 (2016).

    Google Scholar 

  16. Y. S. Liang, Y. X. Liu, Y. R. Zhang, et al., J. Appl. Phys., 117, 043303 (2015).

  17. X. Z. Jiang, Y. X. Liu, Z. H. Bi, et al., Acta Phys. Sin., 61, 15204 (2012).

    Google Scholar 

  18. Y. R. Zhang, X. Xu, A. Bogaerts, et al., J. Phys. D: Appl. Phys., 45, 218 (2011).

    Google Scholar 

  19. Y. Yang and M. J. Kushner, J. Appl. Phys., 108, 035003-2009 (2010).

    Google Scholar 

  20. Y. J. Hong, M. Yoon, F. Iza, et al., J. Phys. D: Appl. Phys., 41, 245208 (2008)

    Article  ADS  Google Scholar 

  21. B. I. Jeon and H. Y. Chang, “EEDF measurements in dual frequency capacitively coupled plasma (CCP) and comparison with PIC simulation,” Talk at the International Conference on Plasma Science (2003).

  22. K. Sun, Y. Xin, X. J. Huang, et al., Acta Phys. Sin., 57, 6465 (2008) [in Chinese].

  23. K. Zhao, Y. X. Liu, F. Gao, et al., Phys. Plasmas, 23, 123512 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Fan.

Additional information

Manuscript submitted by the authors in English first on February 5, 2020 and in final form on March 12, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fan, B., Li, Z. et al. Simulation of Discharge Characteristics for the Plasma Etching of Large Area SiO2 Substrates. J Russ Laser Res 41, 258–267 (2020). https://doi.org/10.1007/s10946-020-09873-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09873-x

Keywords

Navigation