Skip to main content
Log in

Impact of Soft Segment Size on Structural and Permeation Properties of Polyurethane Membranes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A series of polyurethane membranes were synthesized through poly-addition polymerization for reverse osmosis application. Poly (ethylene glycol) with different molecular weights was used as a soft segment and structural and performance properties of membranes were investigated. FTIR spectra of membranes verified the presence of incorporated monomers and the development of urethane linkages. The water content and surface roughness of the membranes were increased progressively with an increase in the size of the soft segment. The surface hydrophilicity and development of porous structure of membranes increased water flux with compromised salt rejection as size of the soft segment was increased. The permeation properties of the membranes including salt rejection and water flux were recorded by a dead-end reverse osmosis unit. PU-3PEG membrane showed the highest salt rejection (88%) whereas the PU-15PEG membrane exhibited the highest water flux (20.7 L/h m2) at effective pressure of 60 bar. The gel content of PU membranes was decreased with increase in the molecular weight of soft segment (PEG). The antibacterial property of PU membranes was validated by the successful inhibition of the gram negative bacterium “Escherichia coli”. These results proved to be influential in interpreting the structure–property relationship of polyurethane membranes for RO process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad A, Jamshaid F, Adrees M, Iqbal SS, Sabir A, Riaz T, Zaheer H, Islam A, Jamil T (2017) Desalination 420:136–144

    Article  CAS  Google Scholar 

  2. Wang H, Lu X, Lu X, Wang Z, Ma J, Wang P (2017) Appl Surf Sci 425:603–613

    Article  CAS  Google Scholar 

  3. Kiani S, Mousavi SM, Saljoughi E, Shahtahmassebi N (2018) Polym Adv Technol 29:1632–1648

    Article  CAS  Google Scholar 

  4. Oki T, Kanae S (2006) Science 313:1068–1072

    Article  CAS  PubMed  Google Scholar 

  5. Chu H, Dong B, Zhang Y, Zhou X (2012) Water Sci Technol 66:1139–1146

    Article  CAS  PubMed  Google Scholar 

  6. Rajeswari A, Vismaiya S, Pius A (2017) Chem Eng J 313:928–937

    Article  CAS  Google Scholar 

  7. Yuan H, He Z (2015) Bioresour Technol 195:202–209

    Article  CAS  PubMed  Google Scholar 

  8. Hosseinzadeh MT, Hosseinian A (2018) J Polym Environ 26:1745–1753

    Article  CAS  Google Scholar 

  9. Bodzek M, Konieczny K, Kwiecińska A (2011) Desalin Water Treat 35:164–184

    Article  CAS  Google Scholar 

  10. Hwang L-L, Wey M-Y, Chen J-C (2012) Water Sci Technol 66:2712–2721

    Article  CAS  PubMed  Google Scholar 

  11. Kang G-d, Cao Y-m (2012) Water Res 46:584–600

    Article  CAS  PubMed  Google Scholar 

  12. Arevalo J, Sandin R, Kennedy M, Salinas Rodriguez S, Rogalla F, Monsalvo V (2018) Water Sci Technol 77:2858–2866

    Article  CAS  PubMed  Google Scholar 

  13. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) ChemBioEng Reviews 4:37–59

    Article  CAS  Google Scholar 

  14. Rezakazemi M, Dashti A, Harami HR, Hajilari N (2018) Environ Chem Lett 16:715–763

    Article  CAS  Google Scholar 

  15. Rezakazemi M, Khajeh A, Mesbah M (2018) Environ Chem Lett 16:367–388

    Article  CAS  Google Scholar 

  16. Baker RW, Low BT (2014) Macromolecules 47:6999–7013

    Article  CAS  Google Scholar 

  17. Bernardo P, Drioli E, Golemme G (2009) Ind Eng Chem Res 48:4638–4663

    Article  CAS  Google Scholar 

  18. Brunetti A, Drioli E, Lee YM, Barbieri G (2014) J Membr Sci 454:305–315

    Article  CAS  Google Scholar 

  19. Luis P, Van Gerven T, Van der Bruggen B (2012) Prog Energy Combust Sci 38:419–448

    Article  CAS  Google Scholar 

  20. Ghosal K, Freeman BD (1994) Polym Adv Technol 5:673–697

    Article  CAS  Google Scholar 

  21. Safari M, Ghanizadeh A, Montazer-Rahmati MM (2009) Int J Greenh Gas Control 3:3–10

    Article  CAS  Google Scholar 

  22. Lively RP, Sholl DS (2017) Nat Mater 16:276

    Article  CAS  PubMed  Google Scholar 

  23. Yin J, Deng B (2015) J Membr Sci 479:256–275

    Article  CAS  Google Scholar 

  24. Abid MF, Zablouk MA, Abid-Alameer AM (2012) Iran J Environ Health Sci Eng 9:17

    Article  CAS  Google Scholar 

  25. de Castro ML, Capote FP, Ávila NS (2008) TrAC Trends Anal Chem 27:315–326

    Article  CAS  Google Scholar 

  26. Rodríguez-Calvo A, Silva-Castro GA, Osorio F, González-López J, Calvo C (2015) Desalin Water Treat 56:849–861

    Article  CAS  Google Scholar 

  27. Bartels CR, Wilf M, Andes K, Iong J (2005) Water Sci Technol 51:473–482

    Article  CAS  PubMed  Google Scholar 

  28. Rukapan W, Khananthai B, Chiemchaisri C, Chiemchaisri W, Srisukphun T (2012) Water Sci Technol 65:127–134

    Article  CAS  PubMed  Google Scholar 

  29. Bereschenko L, Stams A, Heilig G, Euverink G, Nederlof M, Van Loosdrecht M (2007) Water Sci Technol 55:181–190

    Article  CAS  PubMed  Google Scholar 

  30. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Water Res 43:2317–2348

    Article  CAS  PubMed  Google Scholar 

  31. Dutta S, Karak N, Saikia JP, Konwar BK (2010) J Polym Environ 18:167–176

    Article  CAS  Google Scholar 

  32. Garud R, Kore S, Kore V, Kulkarni G (2011) Univers J Environ Res Technol 1:233–238

    Google Scholar 

  33. Lee KP, Arnot TC, Mattia D (2011) J Membr Sci 370:1–22

    Article  CAS  Google Scholar 

  34. Yilgor I, Yilgor E (1999) Polymer 40:5575–5581

    Article  CAS  Google Scholar 

  35. Moghaddam ST, Naimi-Jamal MR, Rohlwing A, Hussein FB, Abu-Zahra N (2019) J Polym Environ 27:1497–1504

    Article  CAS  Google Scholar 

  36. Delpech MC, Miranda GS (2012) Cent Eur J Eng 2:231–238

    CAS  Google Scholar 

  37. Mojerlou F, Lakouraj MM, Barikani M, Mohammadi A (2019) Carbohydr Polym 205:353–361

    Article  CAS  PubMed  Google Scholar 

  38. Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2019) Chin J Chem Eng 27:322–334

    Article  CAS  Google Scholar 

  39. Pournaghshband Isfahani A, Sadeghi M, Wakimoto K, Shrestha BB, Bagheri R, Sivaniah E, Ghalei B (2018) ACS Appl Mater Interfaces 10:17366–17374

    Article  CAS  PubMed  Google Scholar 

  40. Fakhar A, Sadeghi M, Dinari M, Lammertink R (2019) J Membr Sci 574:136–146

    Article  CAS  Google Scholar 

  41. Isfahani AP, Sadeghi M, Wakimoto K, Gibbons AH, Bagheri R, Sivaniah E, Ghalei B (2017) J Membr Sci 542:143–149

    Article  CAS  Google Scholar 

  42. Talakesh MM, Sadeghi M, Chenar MP, Khosravi A (2012) J Membr Sci 415:469–477

    Article  CAS  Google Scholar 

  43. Sadeghi M, Talakesh MM, Ghalei B, Shafiei M (2013) J Membr Sci 427:21–29

    Article  CAS  Google Scholar 

  44. Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP (2011) J Membr Sci 376:188–195

    Article  CAS  Google Scholar 

  45. Zavastin D, Cretescu I, Bezdadea M, Bourceanu M, Drăgan M, Lisa G, Mangalagiu I, Vasić V, Savić J (2010) Colloids Surf A Physicochem Eng Asp 370:120–128

    Article  CAS  Google Scholar 

  46. Riaz T, Ahmad A, Saleemi S, Adrees M, Jamshed F, Hai AM, Jamil T (2016) Carbohydr Polym 153:582–591

    Article  CAS  PubMed  Google Scholar 

  47. Ahmad A, Waheed S, Khan SM, Shafiq M, Farooq M, Sanaullah K, Jamil T (2015) Desalination 355:1–10

    Article  CAS  Google Scholar 

  48. Yari A, Yeganeh H, Bakhshi H (2012) J Mater Sci Mater Med 23:2187–2202

    Article  CAS  PubMed  Google Scholar 

  49. Tabinda R, Adnan A, Sidra S, Muhammad A, Fahad J, Abdul Moqeet H, Tahir J (2016) Carbohydr Polym 153:582–591

    Article  CAS  Google Scholar 

  50. Waheed S, Ahmad A, Khan SM, Jamil T, Islam A, Hussain T (2014) Desalination 351:59–69

    Article  CAS  Google Scholar 

  51. Chou WL, Yu DG, Yang MC (2005) Polym Adv Technol 16:600–607

    Article  CAS  Google Scholar 

  52. Lingling J, Huahua X, Qingsong W, Jinhua S (2013) Polymer Degrad Stabil 98:2687–2696

    Article  CAS  Google Scholar 

  53. Sultan M, Zia KM, Bhatti HN, Jamil T, Hussain R, Zuber M (2012) Carbohydr Polym 87:397–404

    Article  CAS  Google Scholar 

  54. Mohammadi A, Lakouraj MM, Barikani M (2015) Polym Int 64:421–429

    Article  CAS  Google Scholar 

  55. Wu DD, Tan Y, Cao ZW, Han LJ, Zhang HL, Dong LS (2018) Carbohydr Polym 194:236–244

    Article  CAS  PubMed  Google Scholar 

  56. Sivakumar M, Mohan DR, Rangarajan R (2006) J Membr Sci 268:208–219

    Article  CAS  Google Scholar 

  57. Zafar M, Ali M, Khan SM, Jamil T, Butt MTZ (2012) Desalination 285:359–365

    Article  CAS  Google Scholar 

  58. Bai H, Zhou Y, Wang X, Zhang L (2012) Procedia Environ Sci 16:346–351

    Article  CAS  Google Scholar 

  59. Chang CH, Tsao CT, Chang KY, Chen SH, Han JL, Hsieh KH (2012) Biomed Mater Eng 22:373–382

    CAS  PubMed  Google Scholar 

  60. Desai S, Thakore I, Sarawade B, Devi S (2000) Eur Polym J 36:711–725

    Article  CAS  Google Scholar 

  61. Mahdi E, Tan J-C (2016) Polymer 97:31–43

    Article  CAS  Google Scholar 

  62. Sabir A, Shafiq M, Islam A, Sarwar A, Dilshad MR, Shafeeq A, Butt MTZ, Jamil T (2015) Carbohydr Polym 132:589–597

    Article  CAS  PubMed  Google Scholar 

  63. Zhu R, Wang X, Yang J, Wang Y, Zhang Z, Hou Y, Lin F, Li Y (2017) Appl Sci 7:306

    Article  CAS  Google Scholar 

  64. Ahmad A, Jamshed F, Riaz T, Waheed S, Sabir A, AlAnezi AA, Adrees M, Jamil T (2016) Carbohydr Polym 149:207–216

    Article  CAS  PubMed  Google Scholar 

  65. Cheng XQ, Shao L, Lau CH (2015) J Membr Sci 476:95–104

    Article  CAS  Google Scholar 

  66. Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Appl Environ Microbiol 46:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sultan M, Masood R, Bibi I, Sajid I, Islam A, Atta S, Uroos M, Safa Y, Bhatti HN (2019) Prog Org Coat 133:174–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) of Pakistan for financial support of this work through (Grant No. 20–2887/NRPU/R&D/HEC/13/464).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Misbah Sultan or Atif Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Hafeez, S., Sultan, M. et al. Impact of Soft Segment Size on Structural and Permeation Properties of Polyurethane Membranes. J Polym Environ 28, 1944–1953 (2020). https://doi.org/10.1007/s10924-020-01745-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01745-4

Keywords

Navigation