Skip to main content

Advertisement

Log in

Effect of Zn-Cyclen Mimic Enzyme on Mechanical, Thermal and Swelling Properties of Cellulose Nanocrystals/PVA Nanocomposite Membranes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the effect of Zn-cyclen mimic enzyme on the properties of poly(vinyl alcohol)/cellulose nanocrystals (PVA/CNC) nanocomposite membranes have been studied at three different relative humilities (0%RH, 53%RH and 93%RH). Different amounts of mimic enzyme were incorporated, and membranes were prepared by solution casting. The fabricated nanocomposite films were characterized by X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. The results revealed good interfacial interactions between the constituents. The membranes showed enhanced uptake of moisture, with increasing mimic enzyme concentration as well as humidity. The membranes demonstrated the ability to uptake moisture for almost 4 days. The mechanical properties showed an opposite trend as expected. Tensile strength, tensile modulus and dynamic mechanical properties declined with increase in humidity along with mimic enzyme amount. The highest elastic modulus i.e. 33 MPa was found at the lowest humidity i.e. 0%RH for the pure PVA membrane. Similarly, the maximum tensile strength of 118 MPa was found at the similar conditions for the same formulation. The obtained results suggested the potential application of PVA/CNC and mimic enzyme membranes in CO2 separation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mulder M (2012) Basic principles of membrane technology. Springer Science & Business Media, New York

    Google Scholar 

  2. Stamatialis DF, Papenburg BJ, Girones M, Saiful S, Bettahalli SN, Schmitmeier S, Wessling M (2008) Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci 308(1–2):1–34

    Article  CAS  Google Scholar 

  3. Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohyd Polym 184:453–464

    Article  CAS  Google Scholar 

  4. Zhang Y, Wei S, Hu Y, Sun S (2018) Membrane technology in wastewater treatment enhanced by functional nanomaterials. J Clean Prod 197:339–348

    Article  CAS  Google Scholar 

  5. Hussain A, Hägg M-B (2010) A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci 359(1–2):140–148

    Article  CAS  Google Scholar 

  6. Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J, Zhang Q (2017) Graphitic carbon nitride nanosheets embedded in poly (vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation. Sep Purif Technol 188:24–37

    Article  CAS  Google Scholar 

  7. Zhang Y, Yang L, Pramoda KP, Gai W, Zhang S (2019) Highly permeable and fouling-resistant hollow fiber membranes for reverse osmosis. Chem Eng Sci 207:903–910

    Article  CAS  Google Scholar 

  8. George J, Ishida H (2018) A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Prog Polym Sci 86:1–39

    Article  CAS  Google Scholar 

  9. Elele E, Shen Y, Tang J, Lei Q, Khusid B, Tkacik G, Carbrello C (2019) Mechanical properties of polymeric microfiltration membranes. J Membr Sci 591:117351

    Article  CAS  Google Scholar 

  10. González PS, Agostini E, Milrad SR (2008) Comparison of the removal of 2, 4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol. Chemosphere 70(6):982–989

    Article  PubMed  CAS  Google Scholar 

  11. Julinová M, Vaňharová L, Jurča M (2018) Water-soluble polymeric xenobiotics–Polyvinyl alcohol and polyvinylpyrrolidon—and potential solutions to environmental issues: A brief review. J Environ Manage 228:213–222

    Article  PubMed  CAS  Google Scholar 

  12. Shojaeiarani J, Bajwa D, Shirzadifar A (2019) A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohyd Polym. 216:247–259

    Article  CAS  Google Scholar 

  13. Butron A, Llorente O, Fernandez J, Meaurio E, Sarasua J-R (2019) Morphology and mechanical properties of poly (ethylene brassylate)/cellulose nanocrystal composites. Carbohyd Polym 221:137–145

    Article  CAS  Google Scholar 

  14. Nagalakshmaiah M, Nechyporchuk O, El Kissi N, Dufresne A (2017) Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly [(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur Polymer J 91:297–306

    Article  CAS  Google Scholar 

  15. Miao C, Hamad WY (2016) Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer 101:338–346

    Article  CAS  Google Scholar 

  16. Houshyar S, Kumar GS, Rifai A, Tran N, Nayak R, Shanks RA, Padhye R, Fox K, Bhattacharyya A (2019) Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Mater Sci Eng C 100:378–387

    Article  CAS  Google Scholar 

  17. Ljungberg N, Cavaillé J-Y, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292

    Article  CAS  Google Scholar 

  18. Santos M, Gangoiti J, Llama MJ, Serra JL, Keul H, Möller M (2012) Poly (3-hydroxyoctanoate) depolymerase from Pseudomonas fluorescens GK13: Catalysis of ester-forming reactions in non-aqueous media. J Mol Catal B 77:81–86

    Article  CAS  Google Scholar 

  19. Seok JM, Oh SH, Lee SJ, Lee JH, Kim WD, Park S-H, Nam SY, Shin H, Park SA (2019) Fabrication and characterization of 3D scaffolds made from blends of sodium alginate and poly (vinyl alcohol). Mater Today Commun 19:56–61

    Article  CAS  Google Scholar 

  20. Abdulkhani A, Marvast EH, Ashori A, Hamzeh Y, Karimi AN (2013) Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. Int J Biol Macromol 62:379–386

    Article  CAS  PubMed  Google Scholar 

  21. Bober P, Capáková Z, Acharya U, Zasońska BA, Humpolíček P, Hodan J, Hromádková J, Stejskal J (2019) Highly conducting and biocompatible polypyrrole/poly (vinyl alcohol) cryogels. Synth Met 252:122–126

    Article  CAS  Google Scholar 

  22. Chaabouni O, Boufi S (2017) Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohyd Polym 156:64–70

    Article  CAS  Google Scholar 

  23. Koteswararao J, Satyanarayana SV, Madhu GM, Venkatesham V (2019) Estimation of structural and mechanical properties of Cadmium Sulfide/PVA nanocomposite films. Heliyon 5(6):e01851

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shao C, Kim H-Y, Gong J, Ding B, Lee D-R, Park S-J (2003) Fiber mats of poly (vinyl alcohol)/silica composite via electrospinning. Mater Lett 57(9–10):1579–1584

    Article  CAS  Google Scholar 

  25. Feng C, Khulbe K, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  CAS  Google Scholar 

  26. Zeng C, Zhang L, Cheng X, Wang H, Xu N (2008) Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes. Sep Purif Technol 63(3):628–633

    Article  CAS  Google Scholar 

  27. Sabarish R, Unnikrishnan G (2018) PVA/PDADMAC/ZSM-5 zeolite hybrid matrix membranes for dye adsorption: fabrication, characterization, adsorption, kinetics and antimicrobial properties. J Environ Chem Eng 6(4):3860–3873

    Article  CAS  Google Scholar 

  28. Liang W, Luo Z, Zhou L (2019) Preparation and characterization of the n-HA/PVA/CS porous composite hydrogel. Chin J Chem Eng

  29. Bai J, Li Y, Yang S, Du J, Wang S, Zheng J, Wang Y, Yang Q, Chen X, Jing X (2007) A simple and effective route for the preparation of poly (vinylalcohol)(PVA) nanofibers containing gold nanoparticles by electrospinning method. Solid State Commun 141(5):292–295

    Article  CAS  Google Scholar 

  30. Aadil KR, Mussatto SI, Jha H (2018) Synthesis and characterization of silver nanoparticles loaded poly (vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity. Int J Biol Macromol 120:763–767

    Article  CAS  PubMed  Google Scholar 

  31. Xu C, Teja AS (2008) Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids 44(1):85–91

    Article  CAS  Google Scholar 

  32. Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215

    Article  CAS  PubMed  Google Scholar 

  33. Kurczewska J, Pecyna P, Ratajczak M, Gajęcka M, Schroeder G (2017) Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharmaceut J 25(6):911–920

    Article  Google Scholar 

  34. Oluwasina OO, Olaleye FK, Olusegun SJ, Oluwasina OO, Mohallem ND (2019) Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int J Biol Macromol 135:282–293

    Article  CAS  PubMed  Google Scholar 

  35. Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H (2019) Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol 126:620–632

    Article  CAS  PubMed  Google Scholar 

  36. Yakovlev S, Medved L (2018) Effect of fibrinogen, fibrin, and fibrin degradation products on transendothelial migration of leukocytes. Thromb Res 162:93–100

    Article  CAS  PubMed  Google Scholar 

  37. Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J Ind Eng Chem 17(1):36–40

    Article  CAS  Google Scholar 

  38. Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohyd Polym 113:403–410

    Article  CAS  Google Scholar 

  39. Moon R, Beck S, Rudie A (2013) Cellulose nanocrystals: a material with unique properties and many potential applications. Review Process: Non-Refereed (Other)

  40. Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26(2):687–701

    Article  CAS  Google Scholar 

  41. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    Article  CAS  Google Scholar 

  42. Floyd WC III, Baker SE, Valdez CA, Stolaroff JK, Bearinger JP, Satcher JH Jr, Aines RD (2013) Evaluation of a carbonic anhydrase mimic for industrial carbon capture. Environ Sci Technol 47(17):10049–10055

    Article  CAS  PubMed  Google Scholar 

  43. Pabby AK, Rizvi SS, Requena AMS (2008) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Satcher J Jr, Baker S, Kulik H, Valdez C, Krueger R, Lightstone FC, Aines R (2011) Modeling, synthesis and characterization of zinc containing carbonic anhydrase active site mimics. Energy Procedia 4:2090–2095

    Article  CAS  Google Scholar 

  45. Saeed M, Deng L (2016) Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. Int J Greenh Gas Control 53:254–262

    Article  CAS  Google Scholar 

  46. Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A (2019) Fabrication of heparinized nano ZnO/poly (vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J Ind Eng Chem 70:253–263

    Article  CAS  Google Scholar 

  47. Jahan Z, Niazi MBK, Gregersen ØW (2018) Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J Ind Eng Chem 57:113–124

    Article  CAS  Google Scholar 

  48. Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Mater Sci Eng C 59:109–119

    Article  CAS  Google Scholar 

  49. Gupta S, Webster TJ, Sinha A (2011) Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J Mater Sci 22(7):1763–1772

    CAS  Google Scholar 

  50. Galdeano M, Grossmann M, Mali S, Bello-Perez LA, Garcia M, Zamudio-Flores P (2009) Effects of production process and plasticizers on stability of films and sheets of oat starch. Mater Sci Eng C 29(2):492–498

    Article  CAS  Google Scholar 

  51. Luo X, Li J, Lin X (2012) Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films. Carbohyd Polym 90(4):1595–1600

    Article  CAS  Google Scholar 

  52. Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal Khan Niazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazi, M.B.K., Jahan, Z., Ahmed, A. et al. Effect of Zn-Cyclen Mimic Enzyme on Mechanical, Thermal and Swelling Properties of Cellulose Nanocrystals/PVA Nanocomposite Membranes. J Polym Environ 28, 1921–1933 (2020). https://doi.org/10.1007/s10924-020-01737-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01737-4

Keywords

Navigation