Skip to main content
Log in

Neodeightonia phoenicum CMIB-151: Isolation, Molecular Identification, and Production and Characterization of an Exopolysaccharide

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The ascomycete Neodeightonia phoenicum CMIB-151 was isolated from bracts of a palm tree (Syagrus romanzoffiana) in Brazil, and identified by molecular techniques. This is the first report of the isolation of this fungus in South America, and for the first time this fungus has been described as producing an exopolysaccharide (EPS). Different carbon (glucose, fructose, sucrose, maltose, lactose, starch) and nitrogen (yeast extract, peptone, urea, ammonium sulfate) sources were evaluated for the production of EPS. Sucrose and peptone resulted in high production and yield of EPS. High production of EPS occurred at pH 6.0 and 8.0, and acidic conditions (initial pH 5.0) promoted higher mycelial growth. The EPS produced showed a high degree of purity, emulsifying activity and a high water- and oil-holding capacity; important technological properties for industrial applications. FT-IR and 13C-NMR (CP/MAS) analyzes showed typical spectra of carbohydrates containing six-carbon sugar in its structure, and the presence of β-glycosidic configuration with 3-O-substitution. The isolated EPS exhibited remarkable thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagi M (2018) Global biopolymers market to witness a cagr of 15.2% during 2018–2024: energias market research Pvt. Ltd. https://www.globenewswire.com/news-release/2018/07/11/1535796/0/en/Global-Biopolymers-Market-to-witness-a-CAGR-of-15-2-during-2018-2024-Energias-Market-Research-Pvt-Ltd.html. Accessed 17 Dec 2019

  2. Cunha MAA, Albornoz SL, Queiroz Santos VA et al (2017) Structure and biological functions of D-glucans and their applications, 1st edn. John Fedor, Amsterdam

    Google Scholar 

  3. Mahapatra M, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16. https://doi.org/10.4137/MBI.S10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kagimura FY, da Cunha MAA, Barbosa AM et al (2015) Biological activities of derivatized D-glucans: a review. Int J Biol Macromol 72:588–598. https://doi.org/10.1016/j.ijbiomac.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  5. Huang WC, Tang IC (2007) Bacterial and yeast cultures-process characteristics, products, and applications. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. Elsevier, Dublin, pp 185–223

    Chapter  Google Scholar 

  6. Xu Y, Cui Y, Yue F et al (2019) Exopolysaccharides produced by lactic acid bacteria and bifidobacteria: structures, physiochemical functions and applications in the food industry. Food Hydrocoll 94:475–499. https://doi.org/10.1016/j.foodhyd.2019.03.032

    Article  CAS  Google Scholar 

  7. Almasi T, Jabbari K, Gholipour N et al (2019) Synthesis, characterization, and in vitro and in vivo 68Ga radiolabeling of thiosemicarbazone Schiff base derived from dialdehyde dextran as a promising blood pool imaging agent. Int J Biol Macromol 125:915–921. https://doi.org/10.1016/j.ijbiomac.2018.12.133

    Article  CAS  PubMed  Google Scholar 

  8. Cunha MAA, Santos VAQ, Calegari GC et al (2019) Structure and biological properties of lasiodiplodan: An uncommon fungal exopolysaccharide of the (1→ 6)-β-D-glucan type. In: Cohen E, Merzendorfer H (eds) Extracellular sugar-based biopolymers matrices, 1st edn. Cham, Switzerland, pp 409–432

    Chapter  Google Scholar 

  9. Wu J-Y (2017) Ultrasound-assisted extraction of polysaccharides from edible and medicinal fungi: Major factors and process kinetics. MOJ Food Process Technol. https://doi.org/10.15406/mojfpt.2017.04.00086

    Article  Google Scholar 

  10. Góes-neto A, Loguercio-leite C (2005) DNA extraction from frozen field-collected and dehydrated herbarium fungal basidiomata performance of SDS and CTAB-based methods. Biotemas 18:19–32. https://doi.org/10.5007/%25x

    Article  Google Scholar 

  11. Dentinger BTM, Margaritescu S, Moncalvo J-M (2009) Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol Ecol Resour 10:628–633. https://doi.org/10.1111/j.1755-0998.2009.02825.x

    Article  CAS  PubMed  Google Scholar 

  12. Green MR (2012) Molecular cloning this is a free sample of content from molecular cloning: a laboratory manual, 4th edn. John Inglis, New York

    Google Scholar 

  13. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  14. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinforma Appl 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  Google Scholar 

  17. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinforma Appl NOTE 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  Google Scholar 

  18. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. https://doi.org/10.1093/molbev/msn083

    Article  CAS  PubMed  Google Scholar 

  19. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop, GCE, pp 1–8

  20. Marques MW, Lima NB, De Morais MA et al (2013) Species of Lasiodiplodia associated with mango in Brazil. Fungal Divers 61:181–193. https://doi.org/10.1007/s13225-013-0231-z

    Article  Google Scholar 

  21. Adamčík S, Cai L, Chakraborty D et al (2015) Fungal biodiversity profiles 1–10. Cryptogam Mycol 36:121–166. https://doi.org/10.7872/crym/v36.iss2.2015.121

    Article  Google Scholar 

  22. Dai DQ, Phookamsak R, Wijayawardene NN et al (2017) Bambusicolous fungi. Fungal Divers. https://doi.org/10.1007/s13225-016-0367-8

    Article  Google Scholar 

  23. Phillips AJL, Alves A, Pennycook SR et al (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia Mol Phylogeny Evol Fungi 21:29–55. https://doi.org/10.3767/003158508X340742

    Article  CAS  Google Scholar 

  24. Vu D, Groenewald M, de Vries M et al (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  25. Ligoxigakis EK, Markakis EA, Papaioannou IA, Typas MA (2013) First report of palm rot of Phoenix spp. caused by Neodeightonia phoenicum in Greece. Plant Dis. 97:286. https://doi.org/10.1094/PDIS-08-12-0727-PDN

    Article  CAS  PubMed  Google Scholar 

  26. Konta S, Phillips A, Bahkali A et al (2016) Botryosphaeriaceae from palms in Thailand—Barriopsis archontophoenicis sp. nov, from Archontophoenix alexandrae. Mycosphere 7:921–932. https://doi.org/10.5943/mycosphere/si/1b/1

    Article  Google Scholar 

  27. Hyde KD, Konta S, Hongsanan S et al (2016) Botryosphaeriaceae from palms in Thailand II-two new species of Neodeightonia, N. rattanica and N. rattanicola from Calamus (rattan palm). Mycosphere 7:90–961. https://doi.org/10.5943/mycosphere/si/1b/6

    Article  Google Scholar 

  28. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) Phylogenetics a general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Article  CAS  PubMed  Google Scholar 

  30. Vogel HJ (1956) A convenient growth medium for Neurospora (Medium N). Microb Genet Bull 13:42–43

    Google Scholar 

  31. Cunha MAA, Turmina JA, Ivanov RC et al (2012) Lasiodiplodan, an exocellular (1→6)-β-D-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity. J Ind Microbiol Biotechnol 39:1179–1188. https://doi.org/10.1007/s10295-012-1112-2

    Article  CAS  Google Scholar 

  32. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  34. Lobo RE, Gómez MI, Font de Valdez G, Torino MI (2019) Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocoll 96:625–633. https://doi.org/10.1016/j.foodhyd.2019.05.036

    Article  CAS  Google Scholar 

  35. Govarthanan M, Kamala-Kannan S, Selvankumar T et al (2019) Effect of blue light on growth and exopolysaccharides production in phototrophic Rhodobacter sp. BT18 isolated from brackish water. Int J Biol Macromol 131:74–80. https://doi.org/10.1016/j.ijbiomac.2019.03.049

    Article  CAS  PubMed  Google Scholar 

  36. Phillips A (2009) Taxonomy, phylogeny, and epitypification of Melanops tulasnei, the type species of Melanops. Fungal Divers 38:155–166

    Google Scholar 

  37. Phillips AJL, Alves A, Abdollahzadeh J et al (2013) The botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167. https://doi.org/10.3114/sim0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hyde KD, Hongsanan S, Jeewon R et al (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 80:1–270. https://doi.org/10.1007/s13225-016-0373-x

    Article  Google Scholar 

  39. Papinutti L (2010) Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex. Bioresour Technol 101:1941–1946. https://doi.org/10.1016/j.biortech.2009.09.076

    Article  CAS  PubMed  Google Scholar 

  40. Kagimura FY, Cunha MAA, Theis TV et al (2015) Carboxymethylation of (1→6)-β-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation. Carbohydr Polym 127:390–399. https://doi.org/10.1016/j.carbpol.2015.03.045

    Article  CAS  PubMed  Google Scholar 

  41. Guo MQ, Hu X, Wang C, Ai L (2017) Polysaccharides: structure and solubility. In: Xu Z (ed) Solubility of polysaccharides, 1st edn. InTech, London, p 13

    Google Scholar 

  42. Calegari GC, Vidiany Aparecida Queiroz S, Barbosa-Dekker AM et al (2019) Sulfonated (1→6)-β-D-Glucan (lasiodiplodan). Food Technol Biotechnol 57:490–502. https://doi.org/10.17113/ftb.57.04.19.6264

    Article  PubMed  PubMed Central  Google Scholar 

  43. Capriotti K, Capriotti JA (2012) Dimethyl sulfoxide: history, chemistry, and clinical utility in dermatology. J Clin Aesthet Dermatol 5:24–26

    PubMed  PubMed Central  Google Scholar 

  44. Kang D, Cai Z, Wei Y, Zhang H (2017) Structure and chain conformation characteristics of high acyl gellan gum polysaccharide in DMSO with sodium nitrate. Polymer (Guildf) 128:147–158. https://doi.org/10.1016/j.polymer.2017.09.035

    Article  CAS  Google Scholar 

  45. Freitas F, Alves VD, Carvalheira M et al (2009) Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr Polym 78:549–556. https://doi.org/10.1016/j.carbpol.2009.05.016

    Article  CAS  Google Scholar 

  46. Petravić-Tominac V, Zechner-Krpan V, Berković K et al (2011) Rheological properties, water-holding and oil-binding capacities of particulate β-glucans isolated from spent brewer’s yeast by three different procedures. Food Technol Biotechnol 49:56–64

    Google Scholar 

  47. Xu J, Liu W, Yao W et al (2009) Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro. Carbohydr Polym 78:227–234. https://doi.org/10.1016/j.carbpol.2009.03.028

    Article  CAS  Google Scholar 

  48. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2016) Introdução à espectroscopia—Tradução da 5a. edição norte-americana. Cengage Learning, São Paulo-SP

    Google Scholar 

  49. Tian Y, Zeng H, Xu Z et al (2012) Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr Polym 88:522–529. https://doi.org/10.1016/j.carbpol.2011.12.042

    Article  CAS  Google Scholar 

  50. Buddana SK, Venkata Naga Varanasi Y, Reddy Shetty P (2015) Fibrinolytic, anti-inflammatory and anti-microbial properties of α-(1→3)-glucans produced from Streptococcus mutans (MTCC 497). Carbohydr Polym 115:152–159. https://doi.org/10.1016/j.carbpol.2014.08.083

    Article  CAS  PubMed  Google Scholar 

  51. Taubner T, Marounek M, Synytsya A (2017) Preparation and characterization of amidated derivatives of alginic acid. Int J Biol Macromol 103:202–207. https://doi.org/10.1016/j.ijbiomac.2017.05.070

    Article  CAS  PubMed  Google Scholar 

  52. Ulu A, Koytepe S, Ates B (2016) Design of starch functionalized biodegradable P(MAA-co-MMA) as carrier matrix for L-asparaginase immobilization. Carbohydr Polym 153:559–572. https://doi.org/10.1016/j.carbpol.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  53. David Ebenezar IJ, Ramalingam S, Ramachandra Raja C, Jobe Prabakar PC (2014) Vibrational Spectroscopic (IR and Raman) analysis and computational investigation (NMR, UV-Visible, MEP and Kubo gap) on L-valinium picrate. J Nanotechnol Adv Mater 2:11–25. https://doi.org/10.12785/jnam/020102

    Article  Google Scholar 

  54. Wang J, Zhang L (2009) Structure and chain conformation of five water-soluble derivatives of a β-D-glucan isolated from Ganoderma lucidum. Carbohydr Res 344:105–112. https://doi.org/10.1016/j.carres.2008.09.024

    Article  CAS  PubMed  Google Scholar 

  55. Sánchez LWN, Santos VAQ, Teixeira SD et al (2018) O-Acetylated (1→6)-β-D-Glucan (lasiodiplodan): Chemical derivatization, characterization and antioxidant activity. J Pharm Pharmacol 6(6):320–332. https://doi.org/10.17265/2328-2150/2018.04.003

    Article  Google Scholar 

  56. Alquini G, Carbonero ER, Rosado FR et al (2004) Polysaccharides from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.: Fr.) Murr. FEMS Microbiol Lett 230:47–52. https://doi.org/10.1016/S0378-1097(03)00853-X

    Article  CAS  PubMed  Google Scholar 

  57. Synytsya A, Novák M (2013) Structural diversity of fungal glucans. Carbohydr Polym 92:792–809. https://doi.org/10.1016/j.carbpol.2012.09.077

    Article  CAS  PubMed  Google Scholar 

  58. Smiderle FR, Baggio CH, Borato DG et al (2014) Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3)-β-D-glucan. PLoS ONE 9:e110266. https://doi.org/10.1371/journal.pone.0110266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kong L, Yu L, Feng T et al (2015) Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydr Polym 125:1–8. https://doi.org/10.1016/j.carbpol.2015.02.042

    Article  CAS  PubMed  Google Scholar 

  60. Feng F, Zhou Q, Yang Y et al (2018) Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int J Biol Macromol 113:45–50. https://doi.org/10.1016/j.ijbiomac.2018.02.119

    Article  CAS  PubMed  Google Scholar 

  61. Vijeth S, Heggannavar GB, Kariduraganavar YM (2019) Encapsulating wall materials for micro-/nanocapsules. In: Salaün F (ed) Microencapsulation–processes, technologies and industrial applications, 1st edn. IntechOpen, London, pp 1–19

    Google Scholar 

  62. Kavitake D, Delattre C, Devi PB et al (2019) Physical and functional characterization of succinoglycan exopolysaccharide produced by Rhizobium radiobacter CAS from curd sample. Int J Biol Macromol 134:1013–1021. https://doi.org/10.1016/j.ijbiomac.2019.05.050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for providing scholarships to MSF (PPGTP-UTFPR) and DKSG (PPGFAP/UFSC), and for partial financing of the research. ERDS (Process no. 311158/2018-8) and AGN are supported by CNPq, Brazil. Part of this research is part of the MIND.Funga Project: https://mindfunga.ufsc.br/.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MSF, MLKM, DKSG, VAQS and MAAC. The first draft of the manuscript was written by MAAC, AGN, ERDS, AMBD and RFHD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mário A. A. Cunha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Fonseca, M., Marchioro, M.L.K., Guimarães, D.K.S. et al. Neodeightonia phoenicum CMIB-151: Isolation, Molecular Identification, and Production and Characterization of an Exopolysaccharide. J Polym Environ 28, 1954–1966 (2020). https://doi.org/10.1007/s10924-020-01744-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01744-5

Keywords

Navigation