Skip to main content
Log in

Solid-State Supercritical CO2 Foaming of PCL/PLGA Blends: Cell Opening and Compression Behavior

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The foaming behavior of poly(ε-caprolactone)/poly (lactic-co-glycolic acid) (PCL/PLGA) blends and the effect of composition on porous structure, compression property and biocompatibility are investigated. Various portions of PLGA are added into matrix PCL at dispersion phase by melt blending. A solid-state batch foaming process is used based on supercritical CO2 as a physical blowing agent. With the PLGA content increased from 5 to 30 wt%, storage modulus and complex viscosity of PCL from rheological tests are improved significantly. Foaming tests reveal that incorporation of PLGA facilitates foaming of PCL by increasing viscosity. With an increase of PLGA content, pore size clearly decreases, and the open–cell content first increases and then decreases slightly. The maximum open-cell content value is greater than 86% for foamed 10 wt% PLGA. Moreover, uni-axial compression testing shows that dispersed PLGA improves the compressive stress distinctly. Cell structure evolutions at linear elasticity, plateau, and densification stages in compression tests are also investigated. Cell viability results demonstrate that there are more and denser live HUVECs detected on scaffold with increase of PLGA content. Compression strength of PCL/PLGA scaffold has more contributions to cell viability than that of porosity and open-cell content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jin F-L, Zhao M, Park M, Park S-J (2019) Recent trends of foaming in polymer processing: a review. Polymers 11(6):953

    Article  CAS  Google Scholar 

  2. Jacobsen K, Kragl J (2001) Microcellular foam molding: advantages and application examples. In: Structural Plastics 2001: 29th Annual Conference and New Product Design Competition of SPI's Structural Plastics Division

  3. Kuang T, Chang L, Chen F, Sheng Y, Fu D, Peng X (2016) Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105:305–313

    Article  CAS  Google Scholar 

  4. Okolieocha C, Raps D, Subramaniam K, Altstädt V (2015) Microcellular to nanocellular polymer foams: progress (2004–2015) and future directions–a review. Eur Polymer J 73:500–519

    Article  CAS  Google Scholar 

  5. Lv Z, Zhao N, Wu Z, Zhu C, Li Q (2018) Fabrication of novel open-cell foams of poly (ε-caprolactone)/poly (lactic acid) blends for tissue-engineering scaffolds. Ind Eng Chem Res 57(39):12951–12958

    Article  CAS  Google Scholar 

  6. Wang X, Salick MR, Gao Y, Jiang J, Li X, Liu F, Cordie T, Li Q, Turng L-S (2018) Interconnected porous poly (ɛ-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J Cell Plast 54(2):379–397

    Article  CAS  Google Scholar 

  7. Kuang T, Chen F, Chang L, Zhao Y, Fu D, Gong X, Peng X (2017) Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem Eng J 307:1017–1025

    Article  CAS  Google Scholar 

  8. Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20(19):1783–1790

    Article  CAS  Google Scholar 

  9. Chen G, Weng W, Wu D, Wu C, Lu J, Wang P, Chen X (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42(4):753–759

    Article  CAS  Google Scholar 

  10. Zhang K, Wang Y, Jiang J, Wang X, Hou J, Sun S, Li Q (2019) Fabrication of highly interconnected porous poly (ɛ-caprolactone) scaffolds with supercritical CO2 foaming and polymer leaching. J Mater Sci 54(6):5112–5126

    Article  CAS  Google Scholar 

  11. Livshin S, Silverstein MS (2008) Cross-linker flexibility in porous crystalline polymers synthesized from long side-chain monomers through emulsion templating. Soft Matter 4(8):1630–1638

    Article  CAS  Google Scholar 

  12. Chen C, Peng H, Guan Y, Yao S (2019) Morphological study on the pore growth profile of poly (ε-caprolactone) bi-modal porous foams using a modified supercritical CO2 foaming process. J Supercrit Fluids 143:72–81

    Article  CAS  Google Scholar 

  13. Chen C, Liu Q, Xin X, Guan Y, Yao S (2016) Pore formation of poly (ε-caprolactone) scaffolds with melting point reduction in supercritical CO2 foaming. J Supercrit Fluids 117:279–288

    Article  CAS  Google Scholar 

  14. Kong W-l, Bao J-B, Wang J, Hu G-H, Xu Y, Zhao L (2016) Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends. Polymer 90:331–341

    Article  CAS  Google Scholar 

  15. Shim J-H, Yoon M-C, Jeong C-M, Jang J, Jeong S-I, Cho D-W, Huh J-B (2014) Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomed Mater 9(6):065006

    Article  Google Scholar 

  16. Thi Hiep N, Chan Khon H, Dai Hai N, Byong-Taek L, Van Toi V, Thanh Hung L (2017) Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. J Biomater Sci Polym Ed 28(9):864–878

    Article  Google Scholar 

  17. Xin X, Liu Q, Chen C, Guan Y, Yao S (2016) Fabrication of bimodal porous PLGA scaffolds by supercritical CO2 foaming/particle leaching technique. J Appl Polymer Sci. https://doi.org/10.1002/app.43644

    Article  Google Scholar 

  18. Peng C, Zheng J, Chen D, Zhang X, Deng L, Chen Z, Wu L (2018) Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro. Mol Med Rep 18(2):1335–1344

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sánchez-Pech JC, Rosales-Ibáñes R, Cauich-Rodriguez JV, Carrillo-Escalante HJ, Rodríguez-Navarrete A, Avila-Ortega A, Hernández-Sánchez F (2019) Design, synthesis, characterization, and cytotoxicity of PCL/PLGA scaffolds through plasma treatment in the presence of pyrrole for possible use in urethral tissue engineering. J Biomater Appl. https://doi.org/10.1177/0885328219882638

    Article  PubMed  Google Scholar 

  20. Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55(3):401–408

    Article  CAS  Google Scholar 

  21. Goimil L, Jaeger P, Ardao I, Gómez-Amoza JL, Concheiro A, Alvarez-Lorenzo C, García-González CA (2018) Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regeneration processed by compressed CO2 foaming. J CO2 Utilization 24:89–98

    Article  CAS  Google Scholar 

  22. Song C, Li S, Zhang J, Xi Z, Lu E, Zhao L, Cen L (2019) Controllable fabrication of porous PLGA/PCL bilayer membrane for GTR using supercritical carbon dioxide foaming. Appl Surf Sci 472:82–92

    Article  CAS  Google Scholar 

  23. Naguib HE, Park CB, Lee PC (2003) Effect of talc content on the volume expansion ratio of extruded PP foams. J Cell Plast 39(6):499–511

    Article  CAS  Google Scholar 

  24. Kwon Y, Cooke R, Park C (2003) Representative unit-cell models for open-cell metal foams with or without elastic filler. Mater Sci Eng, A 343(1–2):63–70

    Article  Google Scholar 

  25. Yang J, Zhang Y, Zheng S, Huang L, Chen F, Fan P, Zhong M (2014) Probing structure–heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide. J Supercrit Fluids 95:228–235

    Article  CAS  Google Scholar 

  26. Fu D, Chen F, Kuang T, Li D, Peng X, Chiu DY, Lin CS, Lee LJ (2016) Supercritical CO2 foaming of pressure-induced-flow processed linear polypropylene. Mater Des 93:509–513

    Article  CAS  Google Scholar 

  27. Li R, Yu W, Zhou C (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci Part B 45(5):889–898

    Article  CAS  Google Scholar 

  28. Wang X, Li Y, Jiao Y, Zhou H, Wang X (2019) Microcellular foaming behaviors of poly (lactic acid)/low-density polyethylene blends induced by compatibilization effect. J Polym Environ 27(8):1721–1734

    Article  CAS  Google Scholar 

  29. Zhou H, Zhao M, Qu Z, Mi J, Wang X, Deng Y (2018) Thermal and rheological properties of poly (lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior. J Polym Environ 26(9):3564–3573

    Article  CAS  Google Scholar 

  30. Wang X, Mi J, Zhou H, Wang X (2019) Transition from microcellular to nanocellular chain extended poly (lactic acid)/hydroxyl-functionalized graphene foams by supercritical CO2. J Mater Sci 54(5):3863–3877

    Article  CAS  Google Scholar 

  31. Qu Z, Yin D, Zhou H, Wang X, Zhao S (2019) Cellular morphology evolution in nanocellular poly (lactic acid)/thermoplastic polyurethane blending foams in the presence of supercritical N2. Eur Polymer J 116:291–301

    Article  CAS  Google Scholar 

  32. Zhao J, Wang G, Zhang L, Li B, Wang C, Zhao G, Park CB (2019) Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding. Eur Polymer J 119:22–31

    Article  CAS  Google Scholar 

  33. Wang G, Zhao G, Zhang L, Mu Y, Park CB (2018) Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding. Chem Eng J 350:1–11

    Article  Google Scholar 

  34. Li Y, Zhou H, Wen B, Chen Y, Wang X (2019) A Facile and Efficient Method for Preparing Chain Extended Poly (lactic acid) Foams with High Volume Expansion Ratio. J Polym Environ 28:1–15

    Google Scholar 

  35. Sun S, Li Q, Zhao N, Jiang J, Zhang K, Hou J, Wang X, Liu G (2018) Preparation of highly interconnected porous poly (ε-caprolactone)/poly (lactic acid) scaffolds via supercritical foaming. Polym Adv Technol 29(12):3065–3074

    Article  CAS  Google Scholar 

  36. Shutov FA (1983) Foamed polymers. Cellular structure and properties. Industrial developments. Springer, Berlin, pp 155–218

    Chapter  Google Scholar 

  37. Ameli A, Nofar M, Wang S, Park CB (2014) Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 6(14):11091–11100

    Article  CAS  Google Scholar 

  38. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  39. Li T, Zhao G, Wang G, Zhang L, Hou J (2019) Thermal-insulation, electrical, and mechanical properties of highly-expanded PMMA/MWCNT nanocomposite foams fabricated by supercritical CO2 foaming. Macromol Mater Eng 304:1800789

    Article  Google Scholar 

  40. Sun M, Chi G, Li P, Lv S, Xu J, Xu Z, Xia Y, Tan Y, Xu J, Li L (2018) Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. Int J Med Sci 15(3):257

    Article  CAS  Google Scholar 

  41. Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the International Technological Cooperation Project (2015DFA30550), Scientific and technological research project of Henan Province (202102210028, 172102210489), Key scientific research project plan of Henan high education institutions (17A430032) and College students' innovation and entrepreneurship projects of Zhengzhou University (2019cxcy661). Zhengzhou University Doctoral Talent Program for corresponding author is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Jiang or Jianhua Hou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Jiang, J., Li, Z. et al. Solid-State Supercritical CO2 Foaming of PCL/PLGA Blends: Cell Opening and Compression Behavior. J Polym Environ 28, 1880–1892 (2020). https://doi.org/10.1007/s10924-020-01732-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01732-9

Keywords

Navigation