Skip to main content
Log in

Crystal-Field and Exchange Parameters Obtained from the High-Field Magnetization of ErFe11Ti: Revisited

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We perform a high-field magnetization study for the single-crystalline ferrimagnetic ErFe11Ti compound in order to redefine the crystal-field and exchange parameters. For the first time, we predict theoretically the magnetization behavior of ErFe11Ti up to 100 T magnetic field. The latter allows us to observe the full magnetization process (up to the forced-ferromagnetic state) in ErFe11Ti. The results are compared with data for the hydride ErFe11TiH1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.M.D. Coey, Hard magnetic materials: a perspective. IEEE Trans. Mag. 47, 4671–4681 (2011). https://doi.org/10.1109/TMAG.2011.2166975

    Article  ADS  Google Scholar 

  2. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011). https://doi.org/10.1002/adma.201002180

    Article  Google Scholar 

  3. M. H. Kryder, Edward C. Gage, Terry W. McDaniel, William A. Challener, Robert E. Rottmayer, Heat Assisted Magnetic Recording, in Proceedings of the IEEE, vol. 96, no. 11, pp. 1810–1835, 2008. https://doi.org/10.1109/jproc.2008.2004315

  4. W. Körner, G. Krugel, C. Elsässer, Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content. Sci. Rep. 6, 24686 (2016). https://doi.org/10.1038/srep24686

    Article  ADS  Google Scholar 

  5. C. Piquer, F. Grandjean, O. Isnard, G.J. Long, A phenomenological model for the rare-earth contribution to the magnetic anisotropy in RFe11Ti and RFe11TiH. J. Phys. Condens. Matter 18, 221 (2006). https://doi.org/10.1088/0953-8984/18/1/016

    Article  ADS  Google Scholar 

  6. I.S. Tereshina, N.V. Kostyuchenko, E.A. Tereshina-Chitrova, Y. Skourski, M. Doerr, I.A. Pelevin, A.K. Zvezdin, M. Paukov, L. Havela, H. Drulis, ThMn12-type phases for magnets with low rare-earth content: crystal-field analysis of the full magnetization process. Sci. Rep. 8, 3595–3596 (2018). https://doi.org/10.1038/s41598-018-21756-5

    Article  ADS  Google Scholar 

  7. C. Skelland, T. Ostler, S.C. Westmoreland, R.F.L. Evans, R.W. Chantrell, M. Yano, T. Shoji, A. Kato, M. Winklhofer, G. Zimanyi, J. Fischbacher, T. Schrefl, G. Hrkac, The effect of interstitial nitrogen addition on the structural properties of supercells of NdFe12−xTix. IEEE Trans. Magnet. 99, 1–5 (2019). https://doi.org/10.1109/TMAG.2019.2920214

    Article  Google Scholar 

  8. G.C. Hadjipanayis, A.M. Gabay, A.M. Schönhöbel, A. Martín-Cid, J.M. Barandiaran, D. Niarchos, ThMn12-type alloys for permanent magnets. Engineering (2019). https://doi.org/10.1016/j.eng.2018.12.011

    Article  Google Scholar 

  9. J.M.D. Coey, Magnetism and magnetic materials (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  10. R. Skomski, J.M.D. Coey, Magnetic anisotropy—How much is enough for a permanent magnet? Scr. Mater. 112, 3–8 (2016). https://doi.org/10.1016/j.scriptamat.2015.09.021

    Article  Google Scholar 

  11. S.A. Nikitin, I.S. Tereshina, V.N. Verbetsky, A.A. Salamova, Transformations of magnetic phase diagram as a result of insertion of hydrogen and nitrogen atoms in crystalline lattice of RFe11Ti compounds. J. Alloys Compd. 316, 46–50 (2001). https://doi.org/10.1016/S0925-8388(00)01434-1

    Article  Google Scholar 

  12. N.Y. Pankratov, S.A. Nikitin, W. Iwasieczko, H. Drulis, K. Nenkov, K.P. Skokov, O. Gutfleisch, A. Handstein, K.-H. Muller, Effect of hydrogen insertion on the magnetic properties of Er(Fe, Co)11Ti single crystals. J. Alloys Compd. 404, 181–184 (2005). https://doi.org/10.1016/j.jallcom.2005.03.102

    Article  Google Scholar 

  13. K. Kobayashi, D. Furusawa, S. Suzuki, T. Kuno, K. Urushibata, N. Sakuma, M. Yano, T. Shoji, A. Kato, A. Manabe, S. Sugimoto, High-temperature stability of ThMn12 magnet materials. Mater. Trans. 49, 1845–1853 (2018). https://doi.org/10.2320/matertrans.M2018195

    Article  Google Scholar 

  14. A.M. Gabay, R. Cabassi, S. Fabbrici, F. Albertini, G.C. Hadjipanayis, Structure and permanent magnet properties of Zr1−xRxFe10Si2 alloys with R = Y, La, Ce, Pr and Sm. J. Alloys Compd. 683, 271–275 (2016). https://doi.org/10.1016/j.jallcom.2016.05.092

    Article  Google Scholar 

  15. A.M. Gabay, G.C. Hadjipanayis, ThMn12-type structure and uniaxial magnetic anisotropy in ZrFe10Si2 and Zr1−xCexFe10Si2 alloys. J. Alloys Compd. 657, 133–137 (2016). https://doi.org/10.1016/j.jallcom.2015.10.073

    Article  Google Scholar 

  16. W. Suski, The ThMn12-type compounds of rare earths and actinides: structure, magnetic and related properties, in Handbook on the physics and chemistry of rare earths, vol. 22, ed. by K.A. Gschneidner, L. Eyring Jr. (Elsevier, Amsterdam, 1996), pp. 143–294. https://doi.org/10.1016/S0168-1273(96)22006-9

    Chapter  Google Scholar 

  17. Y. Harashima, K. Terakura, H. Kino, S. Ishibashi, T. Miyake, Nitrogen as the best interstitial dopant among X = B, C, N, O, and F for strong permanent magnet NdFe11TiX: first-principles study. Phys. Rev. B. 92, 184426 (2015). https://doi.org/10.1103/PhysRevB.92.184426

    Article  ADS  Google Scholar 

  18. X.-D. Zhang, B.-P. Cheng, Y.-C. Yang, High coercivity in mechanically milled ThMn12-type Nd–Fe–Mo nitride. Appl. Phys. Lett. 77, 4022–4024 (2000). https://doi.org/10.1063/1.1322371

    Article  ADS  Google Scholar 

  19. I.S. Tereshina, P. Gaczynski, V.S. Rusakov, H. Drulis, S.A. Nikitin, W. Suski, N.V. Tristan, T. Palewski, Magnetic anisotropy and Mössbauer effect studies of YFe11Ti and YFe11TiH. J. Phys. Condens. Matter. 13, 8161–8170 (2001). https://doi.org/10.1088/0953-8984/13/35/321

    Article  ADS  Google Scholar 

  20. L.Y. Zhang, W.E. Wallace, Structural and magnetic properties of RTiFe11 and their hydrides (R = Y, Sm). J. Less-Commun. Metals 149, 371–376 (1989). https://doi.org/10.1016/0022-5088(89)90514-6

    Article  Google Scholar 

  21. M.D. Kuzmin, Low-temperature magnetization curves of anisotropic ferrimagnets. J. Appl. Phys. 111, 043904 (2012). https://doi.org/10.1063/1.3687424

    Article  ADS  Google Scholar 

  22. N.V. Kostyuchenko, A.K. Zvezdin, E.A. Tereshina, Y. Skourski, M. Doerr, H. Drulis, I.A. Pelevin, I.S. Tereshina, High-field magnetic behavior and forced-ferromagnetic state in an ErFe11TiH single crystal. Phys. Rev. B. 92, 104423 (2015). https://doi.org/10.1103/PhysRevB.92.104423

    Article  ADS  Google Scholar 

  23. X.C. Kou, T.S. Zhao, R. Grössinger, H.R. Kirchmayr, Magnetic phase transitions, magnetocrystalline anisotropy, and crystal-field interactions in the RFe11Ti series (where R = Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Tm). Phys. Rev. B. 47, 3231–3242 (1993). https://doi.org/10.1103/PhysRevB.47.3231

    Article  ADS  Google Scholar 

  24. S.A. Nikitin, I.S. Tereshina, NYu. Pankratov, Y.V. Skourski, Spin reorientation and crystal fields in single crystal hydride HoFe11TiH. Phys. Rev. B 63, 134420 (2001). https://doi.org/10.1103/PhysRevB.63.134420

    Article  ADS  Google Scholar 

  25. B.-P. Hu, H.-S. Li, J.M.D. Coey, J.P. Gavigan, Magnetization of a Dy(Fe11Ti) single crystal. Phys. Rev. B 41, 2221–2228 (1990). https://doi.org/10.1103/PhysRevB.41.2221

    Article  ADS  Google Scholar 

  26. C. Abadía, P.A. Algarabel, B. García-Landa, M.R. Ibarra, A. del Moral, N.V. Kudrevatykh, P.E. Markin, Study of the crystal electric field interaction in RFe11Ti single crystals. J. Phys. Condens. Matter 10, 349–361 (1998). https://doi.org/10.1088/0953-8984/10/2/014

    Article  ADS  Google Scholar 

  27. Y. Skourski, M.D. Kuzmin, K.P. Skokov, A.V. Andreev, J. Wosnitza, High-field magnetization of Ho2Fe17. Phys. Rev. B. 83, 214420 (2011). https://doi.org/10.1103/PhysRevB.83.214420

    Article  ADS  Google Scholar 

  28. E.A. Tereshina, I.S. Tereshina, M.D. Kuzmin, Y. Skourski, M. Doerr, O.D. Chistyakov, I.V. Telegina, H. Drulis, Variation of the intersublattice exchange coupling due to hydrogen absorption in Er2Fe14B: a high-field magnetization study. J. Appl. Phys. 111, 093923 (2012). https://doi.org/10.1063/1.4716007

    Article  ADS  Google Scholar 

  29. Y. Skourski, J. Bartolomé, M.D. Kuzmin, K.P. Skokov, M. Bonilla, O. Gutfleisch, J. Wosnitza, High-Field Transitions in ErFe11Ti and HoFe11Ti Single Crystals. J. Low Temp. Phys. 170, 307–312 (2013). https://doi.org/10.1007/s10909-012-0697-1

    Article  ADS  Google Scholar 

  30. I.S. Tereshina, L.A. Ivanov, E.A. Tereshina-Chitrova, D.I. Gorbunov, M.A. Paukov, L. Havela, H. Drulis, S.A. Granovsky, M. Doerr, V.S. Gaviko, A.V. Andreev, Tailoring the ferrimagnetic-to-ferromagnetic transition field by interstitial and substitutional atoms in the R-Fe compounds. Intermetallics 112, 106546 (2019). https://doi.org/10.1016/j.intermet.2019.106546

    Article  Google Scholar 

  31. I.S. Tereshina, S.A. Nikitin, V.N. Nikiforov, L.A. Ponomarenko, V.N. Verbetsky, A.A. Salamova, K.P. Skokov, Effect of hydrogen on the magnetic anisotropy and spin-reorientation transition in ErFe11Ti single crystal. J. Alloys Compd. 345, 16–19 (2002). https://doi.org/10.1016/S0925-8388(02)00321-3

    Article  Google Scholar 

  32. I.S. Tereshina, A.P. Pyatakov, E.A. Tereshina-Chitrova, D.I. Gorbunov, Yu. Skourski, J.M. Law, M.A. Paukov, L. Havela, M. Doerr, A.K. Zvezdin, A.V. Andreev, Probing the exchange coupling in the complex modified Ho-Fe-B compounds by high-field magnetization measurements. AIP Adv. 8, 125223 (2018). https://doi.org/10.1063/1.5062588

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Yurii Skourski for useful discussions and for the given opportunity to repeat the experiment on our ErFe11Ti crystals. This work was supported by the Russian Foundation for Basic Research, Project No. 18-02-00994. The work of E.A.T.-Ch. is supported by the project “Nanomaterials Centre for Advanced Applications,” Project No. CZ.02.1.01/0.0/0.0/15_003/0000485, financed by ERDF. Physical properties measurements were performed in the Materials Growth and Measurement Laboratory (http://mgml.eu/)supported within the program of Czech Research Infrastructures (Project No. LM2018096). We acknowledge the support of HLD at HZDR (member of the European Magnetic Field Laboratory).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kostyuchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyuchenko, N.V., Tereshina, I.S., Tereshina-Chitrova, E.A. et al. Crystal-Field and Exchange Parameters Obtained from the High-Field Magnetization of ErFe11Ti: Revisited. J Low Temp Phys 200, 164–172 (2020). https://doi.org/10.1007/s10909-020-02480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02480-9

Keywords

Navigation