Skip to main content
Log in

Overdamped limit of generalized stochastic Hamiltonian systems for singular interaction potentials

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

First, weak solutions of generalized stochastic Hamiltonian systems (gsHs) are constructed via essential m-dissipativity of their generators on a suitable core. For a scaled gsHs we prove convergence of the corresponding semigroups and tightness of the weak solutions. This yields convergence in law of the scaled gsHs to a distorted Brownian motion. In particular, the results confirm the convergence of the Langevin dynamics in the overdamped regime to the overdamped Langevin equation. The proofs work for a large class of (singular) interaction potentials including, e.g. potentials of Lennard-Jones type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adams and J. Fournier. Sobolev spaces. Academic Press, Amsterdam, 2. ed., repr. edition, 2008.

    Google Scholar 

  2. L. Beznea, N. Boboc, and M. Röckner. Markov processes associated with \(L^p\)-resolvents and applications to stochastic differential equations on Hilbert space. J. Evol. Equ., 6(4):745–772, 2006.

    Article  MathSciNet  Google Scholar 

  3. D. Cohn. Measure theory. Birkhaeuser, Boston, 1980.

    Book  Google Scholar 

  4. F. Conrad. Construction and analysis of langevin dynamics in continuous particle systems. PhD thesis, Technische Universität Kaiserslautern, 2010.

  5. F. Conrad and M. Grothaus. Construction of \(N\)-particle langevin dynamics for \(H^{1,\infty }\)-potentials via generalized Dirichlet forms. Potential Anal., 28(3):261–282, 2008.

    Article  MathSciNet  Google Scholar 

  6. F. Conrad and M. Grothaus. Construction, ergodicity and rate of convergence of \(N\)-particle Langevin dynamics with singular potentials. Journal of Evolution Equations, 10(3):623–662, 2010.

    Article  MathSciNet  Google Scholar 

  7. E. Davies. One-parameter semigroups. Academic Press, London, 1980.

    MATH  Google Scholar 

  8. A. Eberle. Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators. Springer, Heidelberg, 1999.

    Book  Google Scholar 

  9. S. Ethier and T. Kurtz. Markov processes characterization and convergence. Wiley, New York, 1986.

    Book  Google Scholar 

  10. L. Evans. Partial Differential Equations. American Mathematical Society, Providence, 2010.

    MATH  Google Scholar 

  11. M. Freidlin. Some remarks on the Smoluchowski-Kramers approximation. J. Statist. Phys., 117(3-4):617–634, 2004.

    Article  MathSciNet  Google Scholar 

  12. J. Goldstein. Semigroups of linear operators and applications. Oxford University Press, New York, 1985.

    MATH  Google Scholar 

  13. M. Grothaus and P. Stilgenbauer. A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions. Integral equations and operator theory, 83(3):331–379, 2015.

    Article  MathSciNet  Google Scholar 

  14. M. Grothaus and F. Wang. Weak Poincaré Inequalities for Convergence Rate of Degenerate Diffusion Processes. Ann. Probab. (to appear), 2019. arXiv:1703.04821

  15. D. Herzog, S. Hottovy, and G. Volpe. The small-mass limit for Langevin dynamics with unbounded coefficients and positive friction. J. Stat. Phys., 163(3):659–673, 2016.

    Article  MathSciNet  Google Scholar 

  16. S. Hottovy, A. McDaniel, G. Volpe, and J. Wehr. The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Comm. Math. Phys., 336(3):1259–1283, 2015.

    Article  MathSciNet  Google Scholar 

  17. I. Karatzas and S. Shreve. Brownian motion and stochastic calculus. Springer, New York, springer study ed., 2. ed., corr. 8. print. edition, 2005.

  18. N.V. Krylov and Michael Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probability Theory and Related Fields, 131(2):154–196, 2005.

    Article  MathSciNet  Google Scholar 

  19. K. Kuwae and T. Shioya. Convergence of spectral structures: A functional analytic theory and its applications to spectral geometry. Communications in analysis and geometry, 11(4):599–674, 2003.

    Article  MathSciNet  Google Scholar 

  20. Z. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer, Berlin, 1992.

    Book  Google Scholar 

  21. V. Nabiullin. Convergence of the langevin dynamics to a distorted Brownian motion in the small velocity limit - an operator semigroup approach. Masters Thesis, Technische Universität Kaiserslautern, 2014.

  22. G. Pavliotis. Stochastic Processes and Applications Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, Heidelberg, 2014.

    Book  Google Scholar 

  23. M. Rousset, Y. Xu, and P. Zitt. A weak overdamped limit theorem for langevin processes. 2017. arXiv:1709.09866

  24. J. Tölle. Convergence of non-symmetric forms with changing reference measures. 2006. https://bibos.math.uni-bielefeld.de/preprints/E06-09-234.pdf

Download references

Acknowledgements

The second author thanks the department of Mathematics at the University of Kaiserslautern for financial support in the form of a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Nonnenmacher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grothaus, M., Nonnenmacher, A. Overdamped limit of generalized stochastic Hamiltonian systems for singular interaction potentials. J. Evol. Equ. 20, 577–605 (2020). https://doi.org/10.1007/s00028-019-00530-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00530-8

Keywords

Mathematics Subject Classification

Navigation