Skip to main content
Log in

Dispersive effect of the Coriolis force and the local well-posedness for the fractional Navier–Stokes–Coriolis system

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper discusses the Cauchy problem for the fractional Navier–Stokes–Coriolis equation (FNSC). The FNSC equation refers to that obtained by replacing the Laplacian in the Navier–Stokes–Coriolis equation by the more general operator \((-\Delta )^{\alpha }\) with \(\alpha >0\). We prove the time-local existence and uniqueness of the mild solution for every \(\varOmega \in \mathbb {R}\backslash \{0\}\) and \(u_0\in \dot{H}^s(\mathbb {R}^3)^3\) with \(1/4<\alpha \leqslant 3/2\), \(3/2-\alpha<\,s\, <5/4\). Furthermore, we give a lower bound for the time interval of its local existence in terms of \(|\varOmega |\) and \(\Vert u_0\Vert _{\dot{H}^s}\). It follows from our characterization that the existence time T of the solution can be arbitrarily large provided the speed of rotation \(|\varOmega |\) is sufficiently fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babin A., Mahalov, A. Nicolaenko, B.: Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal., 15:103–150 (1997).

    Article  MathSciNet  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J., 50:1–35 (2001).

    Article  MathSciNet  Google Scholar 

  3. Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of mathematical fluid dynamics, III:161–244 (2004).

    MathSciNet  MATH  Google Scholar 

  4. Cannone M., Karch, G.: Incompressible Navier-Stokes equations in abstract Banach spaces. Sūrikaisekikenkyūsho Kōkyūroku, 1234:27–41 (2001).

    MathSciNet  Google Scholar 

  5. Cao, C., Titi, Edriss S.: Global well-posedness of the three dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. of Math., 166:245–267 (2007).

    Article  MathSciNet  Google Scholar 

  6. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and dispersion in rotating fluids. Nonlinear partial differential equations and their applications, North Holland, Stud. Math. Appl., 31 (2002).

  7. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An introduction to rotating fluids and the Navier-Stokes equations. Oxford University Press, 1–272 (2006).

  8. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for the 3D rotating Navier-Stokes equations with highly osillating initial data. Pacific J. Math., 262:263–283 (2013).

    Article  MathSciNet  Google Scholar 

  9. Ding, Y., Sun, X.: Uniqueness of weak solutions for fractional Navier-Stokes equations. Front. Math. China, 10: 33–51 (2015).

    Article  MathSciNet  Google Scholar 

  10. Ding, Y., Sun, X.: Strichartz estimates for parabolic equations with higher order differential operators. Sci. China Math., 58:1047–1062 (2015).

    Article  MathSciNet  Google Scholar 

  11. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem, I. Arch. Rational Mech. Anal., 16:269–315 (1964).

    Article  MathSciNet  Google Scholar 

  12. Giga, Y., Inui, K., Mahalov, A., Matsui, S.: Navier-Stokes equations in a rotating frame in \({\mathbb{R}}^{3}\) with initial data nondecreasing at infinity. Hokkaido Math. J., 35:321–364 (2006).

    Article  MathSciNet  Google Scholar 

  13. Giga, Y., Inui, K., Mahalov, A., Matsui, S., Saal, J.: Rotating Navier-Stokes equations in \(\mathbb{R}_{+}^{3}\) with initial data nondecreasing at infinity: the Ekman boundary layer problem. Arch. Ration. Mech. Anal., 186:177–224 (2007).

    Article  MathSciNet  Google Scholar 

  14. Giga, Y., Inui, K., Mahalov, A., Saal, J.: Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data. Indiana Univ. Math. J., 57:2775–2791 (2008).

    Article  MathSciNet  Google Scholar 

  15. Hieber, M., Shibata, Y.: The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework. Math. Z., 265:481–491 (2010).

    Article  MathSciNet  Google Scholar 

  16. Kato, T.: Strong \(L^p\)-solutions of the Navier-Stokes equation in \({\mathbb{R}}^{m}\), with applications to weak solutions. Math. Z., 187:471–480 (1984).

    Article  MathSciNet  Google Scholar 

  17. Konieczny, P., Yoneda, T.: On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations. J. Differential Equations, 250:3859–3873 (2011).

    Article  MathSciNet  Google Scholar 

  18. Kozono, H., Ogawa, T., Taniuchi, Y.: Navier-Stokes equations in the Besov space near \(L^{\infty }\) and \(BMO\). Kyushu J. Math., 57:303–324 (2003).

    Article  MathSciNet  Google Scholar 

  19. Iwabuchi, T., Takada, R.: Global solutions for the Navier-Stokes equations in the rotational framework. Math. Ann., 357:727–741 (2013).

    Article  MathSciNet  Google Scholar 

  20. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248 (1934).

    Article  MathSciNet  Google Scholar 

  21. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969).

    MATH  Google Scholar 

  22. Miao, C., Yuan, B., Zhang, B.: Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal., 68(3):461–484 (2008).

    Article  MathSciNet  Google Scholar 

  23. Stein, Elias M.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970).

    MATH  Google Scholar 

  24. Wu, J.: Generalized MHD equations. J. Differential Equations, 195:284–312 (2003).

    Article  MathSciNet  Google Scholar 

  25. Wu H., Fan, J.: Weak-strong uniqueness for the generalized Navier-Stokes equations. Appl. Math. Lett., 25:423–428 (2012).

    Article  MathSciNet  Google Scholar 

  26. Zhai, Z.: Strichartz type estimates for fractional heat equations. J. Math. Anal. Appl., 356:642–658 (2009).

    Article  MathSciNet  Google Scholar 

  27. Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24:491–505 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the referee for giving many valuable suggestions. X. Sun is supported by NSF of China (Grant: 11461059, 11561062, 11601434), SRPNWNU (Grant: NWNU-LKQW-14-2). Y. Ding is supported by NSF of China (Grant: 11371057) and SRFDP of China (Grant: 20130003110003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Ding, Y. Dispersive effect of the Coriolis force and the local well-posedness for the fractional Navier–Stokes–Coriolis system. J. Evol. Equ. 20, 335–354 (2020). https://doi.org/10.1007/s00028-019-00531-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00531-7

Keywords

Mathematics Subject Classification

Navigation