Skip to main content
Log in

Progress of quantum molecular dynamics model and its applications in heavy ion collisions

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this review article, we first briefly introduce the transport theory and quantum molecular dynamics model applied in the study of the heavy ion collisions from low to intermediate energies. The developments of improved quantum molecular dynamics model (ImQMD) and ultra-relativistic quantum molecular dynamics model (UrQMD), are reviewed. The reaction mechanism and phenomena related to the fusion, multinucleon transfer, fragmentation, collective flow and particle production are reviewed and discussed within the framework of the two models. The constraints on the isospin asymmetric nuclear equation of state and in-medium nucleon-nucleon cross sections by comparing the heavy ion collision data with transport models calculations in last decades are also discussed, and the uncertainties of these constraints are analyzed as well. Finally, we discuss the future direction of the development of the transport models for improving the understanding of the reaction mechanism, the descriptions of various observables, the constraint on the nuclear equation of state, as well as for the constraint on in-medium nucleon-nucleon cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J. A. Gaidos, L. J. Gutay, A. S. Hirsch, R. Mitchell, T. V. Ragland, R. P. Scharenberg, F. Turkot, R. B. Willmann, and C. L. Wilson, Nuclear fragment emission in high-energy p-Xe and p-Kr collisions and a description of their production mechanism, Phys. Rev. Lett. 42(2), 82 (1979)

    ADS  Google Scholar 

  2. R. W. Minich, S. Agarwal, A. Bujak, J. Chuang, J. E. Finn, L. J. Gutay, A. S. Hirsch, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Critical phenomena in hadronic matter and experimental isotopic yields in high energy proton-nucleus collisions, Phys. Lett. B 118(4–6), 458 (1982)

    ADS  Google Scholar 

  3. J. E. Finn, S. Agarwal, A. Bujak, J. Chuang, L. J. Gutay, A. S. Hirsch, R. W. Minich, N. T. Porile, R. P. Scharenberg, B. C. Stringfellow, and F. Turkot, Nuclear fragment mass yields from high-energy proton-nucleus interactions, Phys. Rev. Lett. 49(18), 1321 (1982)

    ADS  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, London: Pergamon Press, 1959

    Google Scholar 

  5. W. Scheid, R. Ligensa, and W. Greiner, Ion-ion potentials and the compressibility of nuclear matter, Phys. Rev. Lett. 21(21), 1479 (1968)

    ADS  Google Scholar 

  6. J. Hofmann, H. Stöcker, U. Heinz, W. Scheid, and W. Greiner, Possibility of detecting density isomers in high-density nuclear mach shock waves, Phys. Rev. Lett. 36(2), 88 (1976)

    ADS  Google Scholar 

  7. P. J. Siemens, Heavy ion collisions, Nucl. Phys. A 335(1–2), 491 (1980)

    ADS  Google Scholar 

  8. H. A. Gustafsson, H. H. Gutbrod, B. Kolb, H. Löhner, B. Ludewigt, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, A. Warwick, F. Weik, and H. Wieman, Collective flow observed in relativistic nuclear collisions, Phys. Rev. Lett. 52(18), 1590 (1984)

    ADS  Google Scholar 

  9. H. Stöcker and W. Greiner, High energy heavy ion collisions—probing the equation of state of highly excited hardronic matter, Phys. Rep. 137(5–6), 277 (1986)

    ADS  Google Scholar 

  10. R. B. Clare and D. Strottman, Relativistic hydrodynamics and heavy ion reactions, Phys. Rep. 141(4), 177 (1986)

    ADS  Google Scholar 

  11. H. Stöcker, J. A. Maruhn, and W. Greiner, Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions, Phys. Rev. Lett. 44(11), 725 (1980)

    ADS  Google Scholar 

  12. R. E. Renfordt, D. Schall, R. Bock, R. Brockmann, J. W. Harris, A. Sandoval, R. Stock, H. Ströbele, D. Bangert, W. Rauch, G. Odyniec, H. G. Pugh, and L. S. Schroeder, Stopping power and collective flow of nuclear matter in the reaction Ar+Pb at 0.8 GeV/u, Phys. Rev. Lett. 53(8), 763 (1984)

    ADS  Google Scholar 

  13. H. Ströbele, R. Brockmann, J. W. Harris, F. Riess, A. Sandoval, R. Stock, K. L. Wolf, H. G. Pugh, L. S. Schroeder, R. E. Renfordt, K. Tittel, and M. Maier, Charged-particle exclusive analysis of central Ar + KCl and Ar + Pb reactions at 1.8 and 0.8 GeV/nucleon, Phys. Rev. C 27(3), 1349 (1983)

    ADS  Google Scholar 

  14. A. Baden, H. H. Gutbrod, H. Löhner, M. R. Maier, A. M. Poskanzer, T. Renner, H. Riedesel, H. G. Ritter, H. Spieler, A. Warwick, F. Weik, and H. Wieman, The plastic ball spectrometer: An electronic 4τ detector with particle identification, Nucl. Instrum. Methods 203(1-3), 189 (1982)

    Google Scholar 

  15. G. Buchwald, G. Graebner, J. Theis, J. Maruhn, W. Greiner, and H. Stöcker, Kinetic energy flow in Nb(400 A MeV) + Nb: Evidence for hydrodynamic compression of nuclear matter, Phys. Rev. Lett. 52(18), 1594 (1984)

    ADS  Google Scholar 

  16. W. Reisdorf and H. G. Ritter, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 47(1), 663 (1997)

    ADS  Google Scholar 

  17. N. Herrmann, J. P. Wessels, and T. Wienold, Collective flow in heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 49(1), 581 (1999)

    ADS  Google Scholar 

  18. R. Wada, K. D. Hildenbrand, U. Lynen, W. F. J. Müller, H. J. Rabe, et al., Isotopic-yield ratios of complex fragments from intermediate-energy heavy-ion reactions, Phys. Rev. Lett. 58(18), 1829 (1987)

    ADS  Google Scholar 

  19. H. Johnston, T. White, J. Winger, D. Rowland, B. Hurst, F. Gimeno-Nogues, D. O'Kelly, and S. J. Yennello, Isospin equilibration in the reaction 40Ar, 40Ca+58Fe, 58Ni, Phys. Lett. B 371(3-4), 186 (1996)

    ADS  Google Scholar 

  20. M. Veselsky, R. W. Ibbotson, R. Laforest, E. Ramakrishnan, D. J. Rowland, A. Ruangma, E. M. Winchester, E. Martin, and S. J. Yennello, Inhomogeneous isospin distribution in the reactions of 28Si+112Sn and 124Sn at 30 and 50 MeV/nucleon, Phys. Rev. C 62(4), 041605 (2000)

    ADS  Google Scholar 

  21. A. Z. Mekjian, Explosive nucleosynthesis, equilibrium thermodynamics, and relativistic heavy-ion collisions, Phys. Rev. C 17(3), 1051 (1978)

    ADS  Google Scholar 

  22. M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G. Verde, and H. S. Xu, Isotopic scaling in nuclear reactions, Phys. Rev. Lett. 86(22), 5023 (2001)

    ADS  Google Scholar 

  23. H. Xu, R. Alfaro, B. Davin, L. Beaulieu, Y. Larochelle, et al., Fragment isospin as a probe of heavy-ion collisions, Phys. Rev. C 65, 061602(R) (2002)

    ADS  Google Scholar 

  24. P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)

    ADS  Google Scholar 

  25. G. G. Adamian, N. V. Antonenko, and W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei, Nucl. Phys. A 618(1-2), 176 (1997)

    ADS  Google Scholar 

  26. A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W. Scheid, Quasifission process in a transport model for a dinuclear system, Phys. Rev. C 64(2), 024604 (2001)

    ADS  Google Scholar 

  27. N. Wang, E. G. Zhao, W. Scheid, and S.-G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with transuranium targets, Phys. Rev. C 85, 041601(R) (2012)

    ADS  Google Scholar 

  28. V. Zagrebaev and W. Greiner, Unified consideration of deep inelastic, quasi-fission and fusion-fission phenomena, J. Phys. G 31(7), 825 (2005)

    ADS  Google Scholar 

  29. A. K. Nasirov, G. Mandaglio, G. Giardina, A. Sobiczewski, and A. I. Muminov, Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120, Phys. Rev. C 84(4), 044612 (2011)

    ADS  Google Scholar 

  30. S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72(3), 733 (2000)

    ADS  Google Scholar 

  31. Yu. Ts. Oganessian, F. S. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, et al., Synthesis of a new element with atomic number Z=117, Phys. Rev. Lett. 104(14), 142502 (2010)

    ADS  Google Scholar 

  32. R. K. Gupta, M. Manhas, G. Münzenberg, and W. Greiner, Theory of the compactness of the hot fusion reaction 48Ca+244Pu292114*, Phys. Rev. C 72, 014607 (2005)

    ADS  Google Scholar 

  33. G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and W. Scheid, Dynamical restriction for a growing neck due to mass parameters in a dinuclear system, Nucl. Phys. A 671(1-4), 233 (2000)

    ADS  Google Scholar 

  34. B. N. Lu, E. G. Zhao, and S. G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C 85, 011301(R) (2012)

    ADS  Google Scholar 

  35. N. Wang, J. L. Tian and W. Scheid, Systematics of fusion probability in “hot” fusion reactions, Phys. Rev. C 84, 061601(R) (2011)

    ADS  Google Scholar 

  36. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies, Phys. Rev. C 84(6), 064614 (2011)

    ADS  Google Scholar 

  37. M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C. I. Low, G. J. Milburn, and J. O. Newton, Beyond the coherent coupled channels description of nuclear fusion, Phys. Rev. Lett. 99(19), 192701 (2007)

    ADS  Google Scholar 

  38. J. R. Leigh, M. Dasgupta, D. J. Hinde, J. C. Mein, C. R. Morton, R. C. Lemmon, J. P. Lestone, J. O. Newton, H. Timmers, J. X. Wei, and N. Rowley, Barrier distributions from the fusion of oxygen ions with 144,148,154Sm and 186W, Phys. Rev. C 52(6), 3151 (1995)

    ADS  Google Scholar 

  39. H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, A case study of collectivity, transfer and fusion enhancement, Nucl. Phys. A 633(3), 421 (1998)

    ADS  Google Scholar 

  40. H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D. Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck, Near-barrier fusion of 32S+90,96Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions, Phys. Rev. C 82(5), 054609 (2010)

    ADS  Google Scholar 

  41. A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58(1), 292 (2007)

    ADS  Google Scholar 

  42. W. D. Myers and W. J. Swiatecki, Nucleus-nucleus proximity potential and superheavy nuclei, Phys. Rev. C 62(4), 044610 (2000)

    ADS  Google Scholar 

  43. M. Liu, N. Wang, Z. Li, X. Wu, and E. Zhao, Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers, Nucl. Phys. A 768(1-2), 80 (2006)

    ADS  Google Scholar 

  44. N. Wang, M. Liu, and Y. X. Yang, Heavy-ion fusion and scattering with Skyrme energy density functional, Sci. China G: Phys. Mech. Astron. 52(10), 1554 (2009))

    ADS  Google Scholar 

  45. N. Wang, K. Zhao, W. Scheid, and X. Wu, Fusion-fission reactions with a modifed Woods-Saxon potential, Phys. Rev. C 77(1), 014603 (2008)

    ADS  Google Scholar 

  46. V. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions, Phys. Rev. C 78(3), 034610 (2008)

    ADS  Google Scholar 

  47. T. Cap, K. Siwek-Wilczyńska, and J. Wilczyński, Nucleus-nucleus cold fusion reactions analyzed with the l-dependent “fusion by diffusion” model, Phys. Rev. C 83(5), 054602 (2011)

    ADS  Google Scholar 

  48. K. Hagino, N. Rowley, and A. T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions, Comput. Phys. Commun. 123(1-3), 143 (1999)

    ADS  MATH  Google Scholar 

  49. C. Y. Wong, Interaction barrier in charged-particle nuclear reactions, Phys. Rev. Lett. 31(12), 766 (1973)

    ADS  Google Scholar 

  50. R. K. Puri and R. K. Gupta, Fusion barriers using the energy-density formalism: Simple analytical formula and the calculation of fusion cross sections, Phys. Rev. C 45(4), 1837 (1992)

    ADS  Google Scholar 

  51. B. Wang, K. Wen, W. J. Zhao, E. G. Zhao, and S. G. Zhou, Systematics of capture and fusion dynamics in heavy-ion collisions, At. Data Nucl. Data Tables 114, 281 (2017)

    ADS  Google Scholar 

  52. V. I. Zagrebaev, Yu. Ts. Oganessian, M. G. Itkis, and W. Greiner, Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions, Phys. Rev. C 73, 031602(R) (2006)

    ADS  Google Scholar 

  53. V. Zagrebaev and W. Greiner, Low-energy collisions of heavy nuclei: Dynamics of sticking, mass transfer and fusion, J. Phys. G 34(1), 1 (2007)

    ADS  Google Scholar 

  54. V. Zagrebaev and W. Greiner, Shell effects in damped collisions: A new way to superheavies, J. Phys. G 34(11), 2265 (2007)

    ADS  Google Scholar 

  55. F. Zhang, C. Li, L. Zhu, and P. Wen, Production cross sections for exotic nuclei with multinucleon transfer reactions, Front. Phys. 13(6), 132113 (2018)

    ADS  Google Scholar 

  56. A. S. Umar and V. E. Oberacker, Heavy-ion interaction potential deduced from density-constrained time-dependent Hartree-Fock calculation, Phys. Rev. C 74, 021601(R) (2006)

    ADS  Google Scholar 

  57. A. S. Umar, V. E. Oberacker, J. A. Maruhn, and P. G. Reinhard, Microscopic composition of ion-ion interaction potentials, Phys. Rev. C 85(1), 017602 (2012)

    ADS  Google Scholar 

  58. T. Nakatsukasa and K. Yabana, Linear response theory in the continuum for deformed nuclei: Green's function vs time-dependent Hartree-Fock with the absorbing boundary condition, Phys. Rev. C 71(2), 024301 (2005)

    ADS  Google Scholar 

  59. J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and M. R. Strayer, Spin-excitation mechanisms in Skyrme-force time-dependent Hartree-Fock calculations, Phys. Rev. C 74(2), 027601 (2006)

    ADS  Google Scholar 

  60. L. Guo, J. A. Maruhn, and P. G. Reinhard, Boostinvariant mean field approximation and the nuclear Landau-Zener effect, Phys. Rev. C 76(1), 014601 (2007)

    ADS  Google Scholar 

  61. C. Simenel, Nuclear quantum many-body dynamics, Eur. Phys. J. A 48(11), 152 (2012)

    ADS  Google Scholar 

  62. B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4-6), 113 (2008)

    ADS  Google Scholar 

  63. B. A. Li, C. M. Ko, and Z. Z. Ren, Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei, Phys. Rev. Lett. 78(9), 1644 (1997)

    ADS  Google Scholar 

  64. B. A. Li, C. M. Ko, and W. Bauer, Isospin physics in heavy-ion collisions at intermediate energies, Int. J. Mod. Phys. E 07(02), 147 (1998)

    ADS  Google Scholar 

  65. L. W. Chen, C. M. Ko, B. A. Li, C. Xu, and J. Xu, Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter, Eur. Phys. J. A 50(2), 29 (2014)

    ADS  Google Scholar 

  66. B. A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions, Phys. Rev. Lett. 88(19), 192701 (2002)

    ADS  Google Scholar 

  67. B. A. Li, Isospin dependence of the π-/π+ ratio and density dependence of the nuclear symmetry energy, Phys. Rev. C 67(1), 017601 (2003)

    ADS  Google Scholar 

  68. V. Baran, M. Colonna, V. Greco, and M. Di Toro, Reaction dynamics with exotic nuclei, Phys. Rep. 410(5-6), 335 (2005)

    ADS  Google Scholar 

  69. V. Greco, V. Baran, M. Colonna, M. Di Toro, T. Gaitanos, and H. H. Wolter, Relativistic effects in the search for high density symmetry energy, Phys. Lett. B 562(3-4), 215 (2003)

    ADS  Google Scholar 

  70. L. W. Chen, C. M. Ko, and B. A. Li, Determination of the stifness of the nuclear symmetry energy from isospin diffusion, Phys. Rev. Lett. 94(3), 032701 (2005)

    ADS  Google Scholar 

  71. L. W. Chen, V. Greco, C. M. Ko, and B. A. Li, Effects of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei, Phys. Rev. Lett. 90(16), 162701 (2003)

    ADS  Google Scholar 

  72. T. Gaitanos, M. Di Toro, S. Type, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)

    ADS  MATH  Google Scholar 

  73. Q. F. Li, Z. X. Li, S. Sof, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential at low and high densities, Phys. Rev. C 72(3), 034613 (2005)

    ADS  Google Scholar 

  74. Q. F. Li, Z. X. Li, S. Sof, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the equation of state with pions, J. Phys. G 32(2), 151 (2006)

    ADS  Google Scholar 

  75. Q. Li, Z. Li, S. Sof, R. K. Gupta, M. Bleicher, and H. Stöcker, Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions, J. Phys. G 31(11), 1359 (2005)

    ADS  Google Scholar 

  76. Q. F. Li, Z. X. Li, E. G. Zhao, and R. K. Gupta, Σ-+ ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities, Phys. Rev. C 71(5), 054907 (2005)

    ADS  Google Scholar 

  77. Q. Li, Z. Li, S. Sof, M. Bleicher, and H. Stöcker, Medium modifcations of the nucleon-nucleon elastic cross section in neutron-rich intermediate energy HICs, J. Phys. G 32(4), 407 (2006)

    ADS  Google Scholar 

  78. W. Reisdorf, et al. (FOPI Collaboration), Systematics of pion emission in heavy ion collisions in the regime, Nucl. Phys. A 781(3–4), 459 (2007)

    ADS  Google Scholar 

  79. G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, and H. Wolter, Isospin effects on subthreshold Kaon production at intermediate energies, Phys. Rev. Lett. 97(20), 202301 (2006)

    ADS  Google Scholar 

  80. M. Di Toro, M. Colonna, G. Ferini, T. Gaitanos, V. Greco, and H. H. Wolter, Heavy ion collisions at relativistic energies: Testing a nuclear matter at high baryon and isospin density, Nucl. Phys. A 782(1-4), 267 (2007)

    ADS  Google Scholar 

  81. G. C. Yong, B. A. Li, and L. W. Chen, Double neutronproton differential transverse flow as a probe for the high density behavior of the nuclear symmetry energy, Phys. Rev. C 74(6), 064617 (2006)

    ADS  Google Scholar 

  82. Y. Leifels, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben, et al., Exclusive studies of neutron and charged particle emission in collisions of 197Au+197Au at 400 MeV/nucleon, Phys. Rev. Lett. 71(7), 963 (1993)

    ADS  Google Scholar 

  83. D. Lambrecht, T. Blaich, T. W. Elze, H. Emling, H. Freiesleben, et al., Energy dependence of collective flow of neutrons and protons in 197Au+197Au collisions, Z. Phys. A 350(2), 115 (1994)

    ADS  Google Scholar 

  84. H. Petersen, Q. Li, X. Zhu, and M. Bleicher, Directed and elliptic flow in heavy-ion collisions from Ebeam = 90 MeV/nucleon to Ec.m. = 200 GeV/nucleon, Phys. Rev. C 74(6), 064908 (2006)

    ADS  Google Scholar 

  85. J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, et al., High intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instr. Method. B 317, 263 (2013)

    ADS  Google Scholar 

  86. G. Q. Xiao, H. S. Xu, and S. C. Wang, HIAF and CiADS national research facilities: Progress and prospect, Nucl. Phys. Rev. 34, 275 (2017)

    Google Scholar 

  87. X. H. Zhou, Physics opportunities at the new facility HIAF, Nucl. Phys. Rev. 35, 339 (2018)

    Google Scholar 

  88. https://frib.msu.edu/

  89. C.-B. Moon, Nuclear physics programs for the future rare isotope beams accelerator facility in Korea, arXiv: 1601.07271 (2016)

    Google Scholar 

  90. http://www.nishina.riken.jp/RIBF/

  91. https://www.ganil-spiral2.eu/

  92. https://fair-center.eu/

  93. https://web.infn.it/epics/index.php/internalprojects/spes

  94. http://nica.jinr.ru/

  95. W. P. Liu, The prospects for accelerator-basednuclear physics facilities, Physics (College Park Md.) 43, 150 (2014) (in Chinese)

    ADS  Google Scholar 

  96. G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei, Nucl. Phys. A 627(2), 361 (1997)

    ADS  Google Scholar 

  97. M. H. Huang, Z. G. Gan, X. H. Zhou, J. Q. Li, and W. Scheid, Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei, Phys. Rev. C 82(4), 044614 (2010)

    ADS  Google Scholar 

  98. G. G. Adamian, N. V. Antonenko, and W. Scheid, Characteristics of quasifission products within the dinuclear system model, Phys. Rev. C 68(3), 034601 (2003)

    ADS  Google Scholar 

  99. G. G. Adamian, N. V. Antonenko, and W. Scheid, Isotopic trends in the production of superheavy nuclei in cold fusion reactions, Phys. Rev. C 69, 011601(R) (2004)

    ADS  Google Scholar 

  100. Z. Q. Feng, G. M. Jin, F. Fu, and J. Q. Li, Production cross sections of superheavy nuclei based on dinuclear system model, Nucl. Phys. A 771, 50 (2006)

    ADS  Google Scholar 

  101. G. G. Adamian, N. V. Antonenko, and A. S. Zubov, Production of unknown transactinides in asymmetry-exit-channel quasifission reactions, Phys. Rev. C 71(3), 034603 (2005)

    ADS  Google Scholar 

  102. Q. Li, W. Zuo, W. Li, N. Wang, E. Zhao, J. Li, and W. Scheid, Deformation and orientation effects in the driving potential of the dinuclear model, Eur. Phys. J. A 24(2), 223 (2005)

    ADS  Google Scholar 

  103. G. G. Adamian, N. V. Antonenko, and D. Lacroix, Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams, Phys. Rev. C 82(6), 064611 (2010)

    ADS  Google Scholar 

  104. M.-H. Mun, G. G. Adamian, N. V. Antonenko, Y. Oh, and Y. Kim, Production cross section of neutron-rich isotopes with radioactive and stable beams, Phys. Rev. C 89, 034622 (2014)

    ADS  Google Scholar 

  105. L. Zhu, Z. Q. Feng, and F. S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinu-clear system model, J. Phys. G 42(8), 085102 (2015)

    ADS  Google Scholar 

  106. L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions, Phys. Rev. C 94(5), 054606 (2016)

    ADS  Google Scholar 

  107. Z. Q. Feng, Production of neutron-rich isotopes around N = 126 in multinucleon transfer reactions, Phys. Rev. C 95(2), 024615 (2017)

    ADS  Google Scholar 

  108. V. Zagrebaev and W. Greiner, New way for the production of heavy neutron-rich nuclei, J. Phys. G 35(12), 125103 (2008)

    ADS  Google Scholar 

  109. V. I. Zagrebaev and W. Greiner, New ideas on the production of heavy and superheavy neutron rich nuclei, Nucl. Phys. A 834(1–4), 366c (2010)

    ADS  Google Scholar 

  110. V. I. Zagrebaev and W. Greiner, Production of heavy trans-target nuclei in multinucleon transfer reactions, Phys. Rev. C 87(3), 034608 (2013)

    ADS  Google Scholar 

  111. V. Zagrebaev and W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions, Phys. Rev. Lett. 101(12), 122701 (2008)

    ADS  Google Scholar 

  112. V. I. Zagrebaev, B. Fornal, S. Leoni, and W. Greiner, Formation of light exotic nuclei in low-energy multinucleon transfer reactions, Phys. Rev. C 89(5), 054608 (2014)

    ADS  Google Scholar 

  113. Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuation-dissipation model for synthesis of superheavy elements, Phys. Rev. C 59(2), 796 (1999)

    ADS  Google Scholar 

  114. Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Diffusion mechanism for synthesis of superheavy elements, Phys. Rev. C 55, R1011(R) (1997)

    ADS  Google Scholar 

  115. C. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C 66, 061602(R) (2002)

    ADS  Google Scholar 

  116. Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of heavy isotopes in transfer reactions by collisions of 238U+238U, Phys. Rev. C 80(6), 067601 (2009)

    ADS  Google Scholar 

  117. X. J. Bao, S. Q. Guo, H. F. Zhang, and J. Q. Li, Influence of entrance channel on production cross sections of superheavy nuclei, Phys. Rev. C 96(2), 024610 (2017)

    ADS  Google Scholar 

  118. J. Tõke, D. K. Agnihotri, S. P. Baldwin, B. Djerroud, B. Lott, B. M. Quednau, W. Skulski, W. U. Schröder, L. G. Sobotka, R. J. Charity, D. G. Sarantites, and R. T. de Souza, Dynamical fragment production as a mode of energy dissipation in heavy-ion reactions, Phys. Rev. Lett. 77(17), 3514 (1996)

    ADS  Google Scholar 

  119. J. P. Bondorf, R. Donangelo, I. N. Mishustin, C. J. Pethick, H. Schulz, and K. Sneppen, Statistical multifrag-mentation of nuclei, Nucl. Phys. A 443(2), 321 (1985)

    ADS  Google Scholar 

  120. J. Bondorf, R. Donangelo, I. N. Mishustin, and H. Schulz, Statistical multifragmentation of nuclei, Nucl. Phys. A 444(3), 460 (1985)

    ADS  Google Scholar 

  121. H. W. Barz, J. P. Bondorf, R. Donangelo, and H. Schulz, Connection between the thermodynamical and the percolation models of nuclear fragmentation, Phys. Lett. B 169(4), 318 (1986)

    ADS  Google Scholar 

  122. B. H. Sa, Y. M. Zheng, and X. Z. Zhang, Disassembly of hot nuclei and relevant phase transition, Int. J. Mod. Phys. A 05(05), 843 (1990)

    ADS  Google Scholar 

  123. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Statistical multifragmentation of nuclei, Phys. Rep. 257(3), 133 (1995)

    ADS  Google Scholar 

  124. A. S. Botvina and I. N. Mishustin, Statistical evolution of isotope composition of nuclear fragments, Phys. Rev. C 63(6), 061601 (2001)

    ADS  Google Scholar 

  125. N. Buyukcizmeci, R. Ogul, and A. S. Botvina, Isospin and symmetry energy effects on nuclear fragment production in liquid-gas-type phase transition region, Eur. Phys. J. A 25(1), 57 (2005)

    ADS  Google Scholar 

  126. P. Napolitani and M. Colonna, Bifurcations in Boltzmann-Langevin one body dynamics for fermionic systems, Phys. Lett. B 726(1-3), 382 (2013)

    ADS  Google Scholar 

  127. P. Napolitani and M. Colonna, Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium description in spallation, Phys. Rev. C 92(3), 034607 (2015)

    ADS  Google Scholar 

  128. T. Gaitanos, A. B. Larionov, H. Lenske, and U. Mosel, Breathing mode in an improved transport approach, Phys. Rev. C 81(5), 054316 (2010)

    ADS  Google Scholar 

  129. A. B. Larionov, T. Gaitanos, and U. Mosel, Kaon and hyperon production in antiproton-induced reactions on nuclei, Phys. Rev. C 85(2), 024614 (2012)

    ADS  Google Scholar 

  130. O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, and U. Mosel, Transport-theoretical description of nuclear reactions, Phys. Rep. 512(1-2), 1 (2012); see also https://gibuu.hepforge.org

    ADS  Google Scholar 

  131. F. S. Zhang and E. Suraud, Analysis of multifragmentation in a Boltzmann-Langevin approach, Phys. Rev. C 51(6), 3201 (1995)

    ADS  Google Scholar 

  132. W.-J. Xie, J. Su, L. Zhu, and F.-S. Zhang, Neutronproton effective mass splitting in a Boltzmann-Langevin approach, Phys. Rev. C 88, 061601(R) (2013)

    ADS  Google Scholar 

  133. P. Danielewicz, Determination of the mean-field momentum-dependence using elliptic flow, Nucl. Phys. A 673(1–4), 375 (2000)

    ADS  Google Scholar 

  134. P. Danielewicz and G. F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy-ion reactions, Nucl. Phys. A 533(4), 712 (1991)

    ADS  Google Scholar 

  135. C. Fuchs and H. H. Wolter, The relativistic Landau-Vlasov method in heavy-ion collisions, Nucl. Phys. A 589(4), 732 (1995)

    ADS  Google Scholar 

  136. T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, and H. H. Wolter, On the Lorentz structure of the symmetry energy, Nucl. Phys. A 732, 24 (2004)

    ADS  MATH  Google Scholar 

  137. C. M. Ko and Q. Li, Relativistic Vlasov-Uehling-Uhlenbeck model for heavy-ion collisions, Phys. Rev. C 37(5), 2270 (1988)

    ADS  Google Scholar 

  138. C. M. Ko and Q. Li, Medium effects in high energy heavy-ion collisions, J. Phys. G 22(12), 1673 (1996)

    ADS  Google Scholar 

  139. T. Song and C. M. Ko, Modifcations of the pion-production threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)

    ADS  Google Scholar 

  140. M. Colonna, M. Di Toro, A. Guarnera, S. Maccarone, M. Zielinska-Pfabé, and H. H. Wolter, Fluctuations and dynamical instabilities in heavy-ion reactions, Nucl. Phys. A 642(3–4), 449 (1998)

    ADS  Google Scholar 

  141. A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)

    ADS  Google Scholar 

  142. M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 110(4), 042701 (2013)

    ADS  Google Scholar 

  143. A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Antisymmetrized version of molecular dynamics with two-nucleon collisions and its application to heavy ion reactions, Prog. Theor. Phys. 87(5), 1185 (1992)

    ADS  Google Scholar 

  144. A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Momentum distribution of fragments in heavy-ion reactions: Dependence on the stochastic collision process, Phys. Rev. C 47(6), 2652 (1993)

    ADS  Google Scholar 

  145. J. Su, F. S. Zhang, and B. A. Bian, Odd-even effect in heavy-ion collisions at intermediate energies, Phys. Rev. C 83(1), 014608 (2011)

    ADS  Google Scholar 

  146. J. Su and F. S. Zhang, Non-equilibrium and residual memory in momentum space of fragmenting sources in central heavy-ion collisions, Phys. Rev. C 87(1), 017602 (2013)

    ADS  Google Scholar 

  147. J. Su, K. Cherevko, W. J. Xie, and F. S. Zhang, Non-isotropic and nonsingle explosion in central 129Xe+120Sn collisions at 50-125 MeV/nucleon, Phys. Rev. C 89(1), 014619 (2014)

    ADS  Google Scholar 

  148. J. Aichelin and G. Bertsch, Numerical simulation of medium energy heavy ion reactions, Phys. Rev. C 31(5), 1730 (1985)

    ADS  Google Scholar 

  149. C. Hartnack, L. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, and W. Greiner, Quantum molecular dynamics a microscopic model from UNILAC to CERN energies, Nucl. Phys. A 495(1-2), 303 (1989)

    ADS  Google Scholar 

  150. J. Aichelin, “Quantum” molecular dynamics—a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5-6), 233 (1991)

    ADS  Google Scholar 

  151. C. Hartnack, R. K. Puri, J. Aichelin, J. Konopka, S. A. Bass, H. Stöcker, and W. Greiner, Modelling the many-body dynamics of heavy ion collisions: Present status and future perspective, Eur. Phys. J. A 1(2), 151 (1998)

    ADS  Google Scholar 

  152. M. Papa, T. Maruyama, and A. Bonasera, Constrained molecular dynamics approach to fermionic systems, Phys. Rev. C 64(2), 024612 (2001)

    ADS  Google Scholar 

  153. M. Papa, Many-body correlations in semiclassical molecular dynamics and Skyrme interaction, Phys. Rev. C 87(1), 014001 (2013)

    ADS  MathSciNet  Google Scholar 

  154. M. Papa, G. Giuliani, and A. Bonasera, Constrained molecular dynamics II: An N-body approach to nuclear systems, J. Comput. Phys. 208(2), 403 (2005)

    ADS  MATH  Google Scholar 

  155. N. Wang, Z. Li, and X. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier, Phys. Rev. C 65(6), 064608 (2002)

    ADS  Google Scholar 

  156. Y. X. Zhang and Z. X. Li, Elliptic flow and system size dependence of transition energies at intermediate energies, Phys. Rev. C 74(1), 014602 (2006)

    ADS  Google Scholar 

  157. Y. X. Zhang, Z. X. Li, and P. Danielewicz, In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 75(3), 034615 (2007)

    ADS  Google Scholar 

  158. Y. X. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and M. B. Tsang, The Influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios, Phys. Lett. B 664(1-2), 145 (2008)

    ADS  Google Scholar 

  159. Y. X. Zhang, Z. X. Li, C. S. Zhou, and M. B. Tsang, Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions, Phys. Rev. C 85, 051602(R) (2012)

    ADS  Google Scholar 

  160. Y. Zhang, D. D. S. Coupland, P. Danielewicz, Z. Li, H. Liu, F. Lu, W. G. Lynch, and M. B. Tsang, Influence of in-medium NN cross sections, symmetry potential, and impact parameter on isospin observables, Phys. Rev. C 85(2), 024602 (2012)

    ADS  Google Scholar 

  161. Y. Zhang, M. Tsang, and Z. Li, Covariance analysis of symmetry energy observables from heavy ion collision, Phys. Lett. B 749, 262 (2015)

    ADS  Google Scholar 

  162. N. Wang, Z. Li, X. Wu, J. Tian, Y. Zhang, and M. Liu, Further development of the improved quantum molecular dynamics model and its application to fusion reactions near the barrier, Phys. Rev. C 69(3), 034608 (2004)

    ADS  Google Scholar 

  163. Z. Q. Feng, Momentum dependence of the symmetry potential and its Influence on nuclear reactions, Phys. Rev. C 84(2), 024610 (2011)

    ADS  Google Scholar 

  164. Z. Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 85(1), 014604 (2012)

    ADS  Google Scholar 

  165. X. G. Cao, G. Q. Zhang, X. Z. Cai, Y. G. Ma, W. Guo, J. G. Chen, W. D. Tian, D. Q. Fang, and H. W. Wang, Roles of deformation and orientation in heavy-ion collisions induced by light deformed nuclei at intermediate energy, Phys. Rev. C 81(6), 061603 (2010)

    ADS  Google Scholar 

  166. G. Q. Zhang, Y. G. Ma, X. G. Cao, C. L. Zhou, X. Z. Cai, D. Q. Fang, W. D. Tian, and H. W. Wang, Unifed description of nuclear stopping in central heavy-ion collisions from 10A MeV to 1.2A GeV, Phys. Rev. C 84, 034612 (2011)

    ADS  Google Scholar 

  167. W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Giant dipole resonance as a fingerprint of α clustering configurations in 12C and 16O, Phys. Rev. Lett. 113(3), 032506 (2014)

    ADS  Google Scholar 

  168. D. T. Khoa, N. Ohtsuka, M. A. Matin, A. Faessler, S. W. Huang, E. Lehmann, and R. K. Puri, In-medium effects in the description of heavy-ion collisions with realistic NN interactions, Nucl. Phys. A 548(1), 102 (1992)

    ADS  Google Scholar 

  169. V. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D. S. Kosov, and Z. Wang, In-medium dependence and Coulomb effects of the pion production in heavy ion collisions, Nucl. Phys. A 628(4), 669 (1998)

    ADS  Google Scholar 

  170. K. Shekhter, C. Fuchs, A. Faessler, M. Krivoruchenko, and B. Martemyanov, Dilepton production in heavy-ion collisions at intermediate energies, Phys. Rev. C 68(1), 014904 (2003)

    ADS  Google Scholar 

  171. M. D. Cozma, Y. Leifels, W. Trautmann, Q. Li, and P. Russotto, Toward a model-independent constraint of the high-density dependence of the symmetry energy, Phys. Rev. C 88(4), 044912 (2013)

    ADS  Google Scholar 

  172. Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron, Phys. Rev. C 83(4), 044617 (2011)

    ADS  Google Scholar 

  173. S. A. Bass, M. Belkacem, M. Bleicher, et al., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41, 255 (1998)

    ADS  Google Scholar 

  174. H. Sorge, H. Stocker, and W. Greiner, Poincaré invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach, Ann. Phys. 192(2), 266 (1989)

    ADS  MATH  Google Scholar 

  175. C.-Y. Wong, Dynamics of nuclear fluid (VIII): Time-dependent Hartree-Fock approximation from a classical point of view, Phys. Rev. C 25, 1460 (1982)

    ADS  Google Scholar 

  176. Ph. Chomaz, G. F. Burgio, and J. Randrup, Inclusion of fluctuations in nuclear dynamics, Phys. Lett. B 254(3-4), 340 (1991)

    ADS  Google Scholar 

  177. F. Chapelle, G. F. Burgio, Ph. Chomaz, and J. Randrup, Fluctuations in nuclear dynamics: Comparison of different methods, Nucl. Phys. A 540(1–2), 227 (1992)

    ADS  Google Scholar 

  178. F. S. Zhang and E. Suraud, Boltzmann-Langevin equation, dynamical instability and multifragmentation, Phys. Lett. B 319(1–3), 35 (1993)

    ADS  Google Scholar 

  179. Y. Abe, S. Ayik, P. G. Reinhard, and E. Suraud, On stochastic approaches of nuclear dynamics, Phys. Rep. 275(2–3), 49 (1996)

    ADS  MathSciNet  Google Scholar 

  180. A. Guarnera, M. Colonna, and Ph. Chomaz, 3D stochastic mean-field simulations of the spinodal fragmentation of dilute nuclei, Phys. Lett. B 373(4), 267 (1996)

    ADS  Google Scholar 

  181. M. Colonna, Fluctuations and symmetry energy in nuclear fragmentation dynamics, Phys. Rev. Lett. 10(4), 042701 (2013)

    ADS  MathSciNet  Google Scholar 

  182. S. Gavin, G. Moschelli, and C. Zin, Boltzmann-Langevin approach to pre-equilibrium correlations in nuclear collisions, Phys. Rev. C 95(6), 064901 (2017)

    ADS  Google Scholar 

  183. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)

    ADS  MathSciNet  Google Scholar 

  184. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140, 1133 (1965)

    ADS  MathSciNet  Google Scholar 

  185. R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem, Springer-Verlag, Berlin, 1990

    MATH  Google Scholar 

  186. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Clarendon, Oxford, 1989

    Google Scholar 

  187. W. Kohn, Electronic structure of matter— wave functions and density functionals, Rev. Mod. Phys. 71(5), 1253 (1999)

    ADS  Google Scholar 

  188. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40(5), 749 (1932)

    ADS  MATH  Google Scholar 

  189. P. Carruthers and F. Zachariasen, Relativistic quantum transport theory approach to multiparticle production, Phys. Rev. D 13(4), 950 (1976)

    ADS  Google Scholar 

  190. L. P. Kadanof and G. Baym, Quantum Statistical Mechanics, Benjamin, New York, 1962

    Google Scholar 

  191. P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev. 115(6), 1342 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  192. J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. (N.Y.) 2(3), 407 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  193. P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys. 152(2), 239 (1984)

    ADS  Google Scholar 

  194. G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Y. L. Han, Medium effects on the NN inelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)

    ADS  Google Scholar 

  195. G. Mao, Z. Li, Y. Zhuo, and Z. Yu, Medium effects on the NN inelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3–4), 183 (1994)

    ADS  Google Scholar 

  196. Y. Han, G. Mao, Z. Li, and Y. Zhuo, Effective nucleon-nucleon cross sections based on Skyrme interactions, Phys. Rev. C 50(2), 961 (1994)

    Google Scholar 

  197. G. Mao, Z. Li, and Y. Zhuo, Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function, Phys. Rev. C 53(6), 2933 (1996)

    ADS  Google Scholar 

  198. G. Mao, L. Neise, H. Stoecker, W. Greiner, and Z. Li, Relativistic transport theory of N, Δ, and N* (1440) interacting through σ, ω, and π mesons, Phys. Rev. C 57(4), 1938 (1998)

    ADS  Google Scholar 

  199. Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleon-nucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)

    ADS  Google Scholar 

  200. Q. Li, Z. Li, and E. Zhao, Density and temperature dependence of nucleon-nucleon elastic cross section, Phys. Rev. C 69(1), 017601 (2004)

    ADS  Google Scholar 

  201. W. Cassing and S. Juchem, Semiclassical transport of particles with dynamical spectral functions, Nucl. Phys. A 665(3–4), 377 (2000)

    ADS  Google Scholar 

  202. G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep. 160(4), 189 (1988)

    ADS  Google Scholar 

  203. J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, and W. Greiner, Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions, Phys. Rev. Lett. 58(19), 1926 (1987)

    ADS  Google Scholar 

  204. C. Hartnack and J. Aichelin, New parametrization of the optical potential, Phys. Rev. C 49(5), 2801 (1994)

    ADS  Google Scholar 

  205. C. Gale, G. Bertsch, and S. Das Gupta, Heavy-ion collision theory with momentum-dependent interactions, Phys. Rev. C 35(5), 1666 (1987)

    ADS  Google Scholar 

  206. M. Isse, A. Ohnishi, N. Otuka, P. K. Sahu, and Y. Nara, Mean-field effects on collective flow in high-energy heavy-ion collisions at 2-158A GeV energies, Phys. Rev. C 72(6), 064908 (2005)

    ADS  Google Scholar 

  207. S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Phys. Rev. C 41(6), 2737 (1990)

    ADS  Google Scholar 

  208. J. Cugnon, Monte Carlo calculation of high-energy heavy-ion interactions, Phys. Rev. C 22(5), 1885 (1980)

    ADS  Google Scholar 

  209. J. J. Molitoris, J. B. Hofer, H. Kruse, and H. Stöcker, Microscopic calculations of collective flow probing the short-range nature of the nuclear force, Phys. Rev. Lett. 53(9), 899 (1984)

    ADS  Google Scholar 

  210. H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stöcker, Vlasov-Uehling-Uhlenbeck theory of medium energy heavy ion reactions: Role of mean field dynamics and two body collisions, Phys. Rev. C 31(5), 1770 (1985)

    ADS  Google Scholar 

  211. G. F. Bertsch, H. Kruse, and S. D. Gupta, Boltzmann equation for heavy ion collisions, Phys. Rev. C 29(2), 673 (1984)

    ADS  Google Scholar 

  212. C. Grégoire, B. Remaud, F. Sebille, L. Vinet, and Y. Rafray, Semi-classical dynamics of heavy-ion reactions, Nucl. Phys. A 465(2), 317 (1987)

    ADS  Google Scholar 

  213. J. Aichelin, C. Hartnack, A. Bohnet, L. Zhuxia, G. Peilert, H. Stöcker, and W. Greiner, QMD versus BUU/VUU: Same results from different theories, Phys. Lett. B 224(1–2), 34 (1989)

    ADS  Google Scholar 

  214. H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515(1), 147 (1990)

    ADS  Google Scholar 

  215. H. Feldmeier and J. Schnack, Fermionic molecular dynamics SCV252SCV133 V2, Prog. Part. Nucl. Phys. 39, 393 (1997)

    ADS  Google Scholar 

  216. T. Maruyama, K. Niita, and A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions, Phys. Rev. C 53(1), 297 (1996)

    ADS  Google Scholar 

  217. L. Wilets, E. M. Henley, M. Kraft, and A. D. Mackellar, Clascal many-body model for heavy-ion collisions incorporating the Pauli principle, Nucl. Phys. A 282(2), 341 (1977)

    ADS  Google Scholar 

  218. L. Wilets, Y. Yariv, and R. Chestnut, Classical many-body model for heavy-ion collisions (II), Nucl. Phys. A 301(2), 359 (1978)

    ADS  Google Scholar 

  219. J. C. Dorso and J. Randrup, Classical simulation of nuclear systems, Phys. Lett. B 215(4), 611 (1988)

    ADS  Google Scholar 

  220. Z. X. Li, C. Hartnack, H. Stoeker, and W. Greiner, Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate energy heavy ion collisions, Phys. Rev. C. 44, 824 (1990)

    ADS  Google Scholar 

  221. N. Wang, L. Ou, Y. Zhang, and Z. Li, Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei, Phys. Rev. C 89(6), 064601 (2014)

    ADS  Google Scholar 

  222. H. Yao and N. Wang, Microscopic dynamics simulations of multinucleon transfer in 86Kr+64Ni at 25 MeV/nucleon, Phys. Rev. C 95(1), 014607 (2017)

    ADS  Google Scholar 

  223. Y. Y. Jiang, N. Wang, Z. X. Li, and W. Scheid, Dynamical nucleus-nucleus potential at short distances, Phys. Rev. C 81(4), 044602 (2010)

    ADS  Google Scholar 

  224. N. Wang, K. Zhao, and Z. X. Li, Systematic study of 16O-induced fusion with the improved quantum molecular dynamics model, Phys. Rev. C 90(5), 054610 (2014)

    ADS  Google Scholar 

  225. J. Tian, X. Wu, K. Zhao, Y. Zhang, and Z. Li, Properties of the composite systems formed in the reactions of 238U+238U and 232Th+250Cf, Phys. Rev. C 77(6), 064603 (2008)

    ADS  Google Scholar 

  226. K. Zhao, X. Wu, and Z. Li, Quantum molecular dynamics study of the mass distribution of products in 7.0A MeV 238U+238U collisions, Phys Rev. C 80(5), 054607 (2009)

    ADS  Google Scholar 

  227. Y. X. Zhang, M. B. Tsang, Z. X. Li, and H. Liu, Constraints on nucleon effective mass splitting with heavy ion collisions, Phys. Lett. B 732, 186 (2014)

    ADS  MathSciNet  Google Scholar 

  228. J. J. Cugnon, D. L'Hôte, and J. Vandermeulen, Simple parametrization of cross-sections for nuclear transport studies up to the GeV range, Nucl. Instrum. Methods B 111(3-4), 215 (1996)

    ADS  Google Scholar 

  229. A. Ono, J. Xu, M. Colonna, P. Danielewicz, C. M. Ko, et al., Comparison of heavy-ion transport simulations: Collision integral with pions and Δ resonances in a box, Phys. Rev. C 100(4), 044617 (2019)

    ADS  Google Scholar 

  230. N. Wang and T. Li, Shell and isospin effects in nuclear charge radii, Phys. Rev. C 88, 011301(R) (2013)

    ADS  Google Scholar 

  231. A. Trzcińska, J. Jastrzebski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, Neutron density distributions deduced from antiprotonic atoms, Phys. Rev. Lett. 87(8), 082501 (2001)

    ADS  Google Scholar 

  232. J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Håkansson, Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force, Nucl. Phys. A 386(1), 79 (1982)

    ADS  Google Scholar 

  233. K. Wen, F. Sakata, Z. X. Li, X. Z. Wu, Y. X. Zhang, and S. G. Zhou, Non-Gaussian fluctuations and non-Markovian effects in the nuclear fusion process: Langevin dynamics emerging from quantum molecular dynamics simulations, Phys. Rev. Lett. 111(1), 012501 (2013)

    ADS  Google Scholar 

  234. R. Nebauer, J. Aichelin, M. Assenard, G. Auger, C. O. Bacri, et al., Multifragmentation in Xe(50A MeV) + Sn: Confrontation of theory and data, Nucl. Phys. A 658(1), 67 (1999)

    ADS  Google Scholar 

  235. T. X. Liu, M. J. van Goethem, X. D. Liu, W. G. Lynch, R. Shomin, et al., Isotope yields from central 112,124Sn+112,124Sn collisions: Dynamical emission? Phys. Rev. C 69(1), 014603 (2004)

    ADS  Google Scholar 

  236. P. Russotto, E. De Filippo, A. Pagano, E. Piasecki, F. Amorini, et al. Strong enhancement of dynamical emission of heavy fragments in the neutron-rich 124Sn+64Ni reaction at 35A MeV, Phys. Rev. C 81(6), 064605 (2010)

    ADS  Google Scholar 

  237. Z. Kohley, L. W. May, S. Wuenschel, M. Colonna, M. Di Toro, et al., Transverse collective flow and midrapidity emission of isotopically identified light charged particles, Phys. Rev. C 83(4), 044601 (2011)

    ADS  Google Scholar 

  238. S. Hudan, A. Chbihi, J. D. Frankland, A. Mignon, J. P. Wieleczko, et al., Characteristics of the fragments produced in central collisions of 129Xe+natSn from 32A to 50AMeV, Phys. Rev. C 67(6), 064613 (2003)

    ADS  Google Scholar 

  239. C. O. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Phys. Lett. B 301(4), 328 (1993)

    ADS  Google Scholar 

  240. R. K. Puri and J. Aichelin, Simulated annealing clusterization algorithm for studying the multifragmentation, J. Comput. Phys. 162(1), 245 (2000)

    ADS  MATH  Google Scholar 

  241. P. B. Gossiaux, R. K. Puri, C. Hartnack, and J. Aichelin, The multifragmentation of spectator matter, Nucl. Phys. A 619(3-4), 379 (1997)

    ADS  Google Scholar 

  242. S. Goyal and R. K. Puri, Formation of fragments in heavy-ion collisions using a modifed clusterization method, Phys. Rev. C 83(4), 047601 (2011)

    ADS  Google Scholar 

  243. M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Sof, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model, J. Phys. G. 25(9), 1859 (1999)

    ADS  Google Scholar 

  244. Q. Li, G. Graf, and M. Bleicher, Ultrarelativistic quantum molecular dynamics calculations of two-pion Hanbury-Brown-Twiss correlations in central Pb-Pb collisions at \(\sqrt {^SNN} = 2.76\) TeV, Phys. Rev. C 85(3), 034908 (2012)

    ADS  Google Scholar 

  245. https://urqmd.org/

  246. Q. Li, M. Bleicher, and H. Stöcker, The effect of “preformed” hadron potentials on the dynamics of heavy ion collisions and the HBT puzzle, Phys. Lett. B 659(3), 525 (2008)

    ADS  Google Scholar 

  247. H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stocker, Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage, Phys. Rev. C 78(4), 044901 (2008)

    ADS  Google Scholar 

  248. Q. Li, J. Steinheimer, H. Petersen, M. Bleicher, and H. Stocker, Effects of a phase transition on HBT correlations in an integrated Boltzmann+hydrodynamics approach, Phys. Lett. B 674(2), 111 (2009)

    ADS  Google Scholar 

  249. P. Russotto, S. Gannon, S. Kupny, P. Lasko, L. Acosta, et al., Results of the ASY-EOS experiment at GSI: The symmetry energy at suprasaturation density, Phys. Rev. C 94(3), 034608 (2016)

    ADS  Google Scholar 

  250. C. Guo, Y. Wang, Q. Li, and F. S. Zhang, Effect of the spin-orbit interaction on flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 90(3), 034606 (2014)

    ADS  Google Scholar 

  251. Y. Sun, Y. Wang, Q. Li, and F. Wang, Effect of internal magnetic field on collective flow in heavy ion collisions at intermediate energies, Phys. Rev. C 99(6), 064607 (2019)

    ADS  Google Scholar 

  252. Y. Liu, Y. Wang, Q. Li, and L. Liu, Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon, Phys. Rev. C 97, 034602 (2018)

    ADS  Google Scholar 

  253. Y. Du, Y. Wang, Q. Li, and L. Liu, The effect of Lorentz-like force on collective flows of K+ in Au+Au collisions at 1.5 GeV/nucleon, Sci. China Phys. Mech. Astron. 61(6), 062011 (2018)

    ADS  Google Scholar 

  254. Y. Wang, Q. Li, Y. Leifels, and A. Le Fevre, Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime, Phys. Lett. B 802, 135249 (2020)

    Google Scholar 

  255. Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Collective flow of light particles in Au+Au collisions at intermediate energies, Phys. Rev. C 89(3), 034606 (2014)

    ADS  Google Scholar 

  256. P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain, Phys. Rev. C 97(4), 044620 (2018)

    ADS  Google Scholar 

  257. X. Wu, J. Tian, W. Ning, Z. Kai, and Z. Li, Microscopic study on dynamic barrier in fusion reactions, Chin. Phys. C. 12, 1317 (2004)

    Google Scholar 

  258. V. Yu. Denisov and W. Nörenberg, Entrance channel potentials in the synthesis of the heaviest nuclei, Eur. Phys. J. A 15(3), 375 (2002)

    ADS  Google Scholar 

  259. V. Zanganeh, N. Wang, and O. N. Ghodsi, Dynamical nucleus-nucleus potential and incompressibility of nuclear matter, Phys. Rev. C 85(3), 034601 (2012)

    ADS  Google Scholar 

  260. E. F. Aguilera, J. J. Kolata, and R. J. Tighe, Nu clear structure effects in the sub-barrier fusion of 16O+70,72,73,74,76Ge, Phys. Rev. C 52(6), 3103 (1995)

    ADS  Google Scholar 

  261. T. Kurtukian-Nieto, J. Benlliure, K. H. Schmidt, L. Audouin, F. Becker, et al., Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A = 195, Phys. Rev. C 89(2), 024616 (2014)

    ADS  Google Scholar 

  262. K. D. Hildenbrand, H. Freiesleben, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, Reaction between 238U and 238U at 7.42 MeV/nucleon, Phys. Rev. Lett. 39(17), 1065 (1977)

    ADS  Google Scholar 

  263. M. Schädel, J. V. Kratz, H. Ahrens, W. Brüchle, G. Franz, H. Gäggeler, I. Warnecke, G. Wirth, G. Herrmann, N. Trautmann and M. Weis, Isotope distributions in the reaction of 238U with 238U, Phys. Rev. Lett. 41(7), 469 (1978)

    ADS  Google Scholar 

  264. H. Essel, K. Hartel, W. Henning, P. Kienle, et al., Charge and mass transfer in the reaction 136Xe+208Pb at energies close to the coulomb barrier, Z. Phys. A At. Nucl. 289(3), 265 (1979)

    ADS  Google Scholar 

  265. H. Freiesleben, K. D. Hildenbrand, F. Pühlhofer, W. F. W. Schneider, R. Bock, D. Harrach, and H. J. Specht, The reaction 238U+238U at 7.42 MeV/u, Z. Phys. A At. Nucl. 292(2), 171 (1979)

    ADS  Google Scholar 

  266. M. Schädel, W. Brüchle, H. Gäggeler, J. V. Kratz, K. Sümmerer, et al., Actinide production in collisions of 238U with 248Cm, Phys. Rev. Lett. 48(13), 852 (1982)

    ADS  Google Scholar 

  267. K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Actinide production in reactions of heavy ions with 248Cm, Phys. Rev. C 33(4), 1315 (1986)

    ADS  Google Scholar 

  268. J. V. Kratz, M. Schädel, and H. W. Gäggeler, Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier, Phys. Rev. C 88(5), 054615 (2013)

    ADS  Google Scholar 

  269. C. Golabek, A. C. C. Villari, S. Heinz, W. Mittig, S. Bhattacharyya, et al, Search for a long living giant system in 238U+238U collisions near the coulomb barrier, Int. J. Mod. Phys. E 17(10), 2235 (2008)

    ADS  Google Scholar 

  270. T. Mijatović, S. Szilner, L. Corradi, D. Montanari, G. Pollarolo, et al, Multinucleon transfer reactions in the 40Ar+208Pb system, Phys. Rev. C. 94, 064616 (2016)

    ADS  Google Scholar 

  271. J. S. Barrett, W. Loveland, R. Yanez, S. Zhu, A. D. Ayangeakaa, et al, 136Xe+208Pb reaction: A test of models of multinucleon transfer reactions, Phys. Rev. C 91(6), 064615 (2015)

    ADS  Google Scholar 

  272. W. Loveland, Synthesis of transactinide nuclei using radioactive beams, Phys. Rev. C 76(1), 014612 (2007)

    ADS  Google Scholar 

  273. R. Yanez and W. Loveland, Predicting the production of neutron-rich heavy nuclei in multinucleon transfer reactions using a semi-classical model including evaporation and fission competition, GRAZING-F, Phys. Rev. C 91(4), 044608 (2015)

    ADS  Google Scholar 

  274. C. Golabek and C. Simenel, Collision dynamics of two 238U atomic nuclei, Phys. Rev. Lett. 103(4), 042701 (2009)

    ADS  Google Scholar 

  275. D. J. Kedziora and C. Simenel, New inverse quasifission mechanism to produce neutron-rich transfermium nuclei, Phys. Rev. C 81(4), 044613 (2010)

    ADS  Google Scholar 

  276. N. Wang, Z. Li, X. Wu, and E. Zhao, Search for possible way of producing super-heavy elements: Dynamic study on damped reactions of 244Pu+244Pu, 238U+238U and 197Au+197Au, Mod. Phys. Lett. A 20(34), 2619 (2005)

    ADS  Google Scholar 

  277. K. Zhao, Z. Li, X. Wu, and Y. Zhang, Production probability of superheavy fragments at various initial deformations and orientations in the 238U+238U reaction, Phys. Rev. C 88(4), 044605 (2013)

    ADS  Google Scholar 

  278. K. Zhao, Z. Li, N. Wang, Y. Zhang, Q. Li, Y. Wang, and X. Wu, Production mechanism of neutron-rich transuranium nuclei in 238U+238U collisions at near-barrier energies, Phys. Rev. C 92(2), 024613 (2015)

    ADS  Google Scholar 

  279. K. Zhao, Z. Li, Y. Zhang, N. Wang, Q. Li, C. Shen, Y. Wang, and X. Wu, Production of unknown neutron-rich isotopes in 238U+238U collisions at near-barrier energy, Phys. Rev. C 94(2), 024601 (2016)

    ADS  Google Scholar 

  280. S. Ayik, B. Yilmaz, O. Yilmaz, A. S. Umar, and G. Turan, Multinucleon transfer in central collisions of 238U+238U, Phys. Rev. C 96(2), 024611 (2017)

    ADS  Google Scholar 

  281. K. Sekizawa, and K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer processes in 40,48Ca+124Sn, 40Ca+208Pb, and 58Ni+208Pb reactions, Phys. Rev. C 88(1), 014614 (2013)

    ADS  Google Scholar 

  282. A. Ghiorso, D. Lee, L. P. Somerville, W. Loveland, J. M. Nitschke, et al., Evidence for the synthesis of 267110 produced by the 59Co+209Bi reaction, Nucl. Phys. A 583, 861 (1995)

    ADS  Google Scholar 

  283. Yu. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, et al., α decay of 273110: Shell closure at N = 162, Phys. Rev. C 54(2), 620 (1996)

    Google Scholar 

  284. V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hofman, et al, Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb, Phys. Rev. Lett. 83(6), 1104 (1999)

    ADS  Google Scholar 

  285. Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al, Synthesis of superheavy nuclei in the 48Ca+244Pu reaction, Phys. Rev. Lett. 83(16), 3154 (1999)

    ADS  Google Scholar 

  286. Yu. Ts. Oganessian, et al., Observation of the decay of 292116, Phys. Rev. C 63, 011301(R) (2000)

    ADS  Google Scholar 

  287. Yu. Ts. Oganessian, V. K. Utyonkoy, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al., Experiments on the synthesis of element 115 in the reaction 243Am (48Ca, xn)291−x 115, Phys. Rev. C 69(2), 021601 (2004)

    ADS  Google Scholar 

  288. Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U 242P and 248Cm+48C Ph Rev. C 70(6) 064609 (2004)

    ADS  Google Scholar 

  289. Yu. Ts. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, et al., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions, Phys. Rev. C 74(4), 044602 (2006)

    ADS  Google Scholar 

  290. Yu. Ts. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Y. V. Lobanov, M. G. Itkis, et al., Synthesis of elements 115 and 113 in the reaction 243Am+48Ca, Phys. Rev. C 72(3), 034611 (2005)

    ADS  Google Scholar 

  291. P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, et al., New superheavy element isotopes: 242Pu (48Ca, 5n)285114, Phys. Rev. Lett. 105(18), 182701 (2010)

    ADS  Google Scholar 

  292. Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, et al., New insights into the 243Am+48Ca reaction products previously observed in the experiments on elements 113, 115, and 117, Phys. Rev. Lett. 108(2), 022502 (2012)

    ADS  Google Scholar 

  293. Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, et al., Production and decay of the heaviest nuclei 293,294117 and 294118, Phys. Rev. Lett. 109(16), 162501 (2012)

    ADS  Google Scholar 

  294. W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, G. Münzenberg, et al., Fusability and fissionability in 86Kr-induced reactions near and below the fusion barrier, Nucl. Phys. A 444(1), 154 (1985)

    ADS  Google Scholar 

  295. R. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald, L. G. Moretto, et al., Systematics of complex fragment emission in niobium-induced reactions, Nucl. Phys. A 483(2), 371 (1988)

    ADS  Google Scholar 

  296. N. Wang, T. Wu, J. Zeng, Y. X. Yang, and L. Ou, Improvement on fermionic properties and new isotope production in molecular dynamics simulations, J. Phys. G 43(6), 065101 (2016)

    ADS  Google Scholar 

  297. N. Wang and L. Guo, New neutron-rich isotope production in 154Sm+160Gd, Phys. Lett. B 760, 236 (2016)

    ADS  Google Scholar 

  298. G. Audi, F. G. Kondev, M. Wang, B. Pfeifer, X. Sun, J. Blachot, and M. MacCormick, The Nubase2012 evaluation of nuclear properties, Chin. Phys. C 36(12), 1157 (2012)

    Google Scholar 

  299. I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, et al., Dynamical evolution of the 197Au+197Au system at 15 MeV/nucleon, Int. J. Mod. Phys. E 15(02), 495 (2006)

    ADS  Google Scholar 

  300. I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, et al., Ternary reactions in 197Au+197Au collisions revisited, Int. J. Mod. Phys. E 16(02), 511 (2007)

    ADS  Google Scholar 

  301. I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, F. Amorini, A. Anzalone, et al., Fast ternary and quaternary breakup of the 197Au+197Au system in collisions at 15 MeV/nucleon, Phys. Rev. Lett. 101(26), 262701 (2008)

    ADS  Google Scholar 

  302. J. Wilczynski, I. Skwira-Chalot, K. Siwek-Wilczynska, J. Wilczynski, et al., Observation of fast collinear partitioning of the 197Au+197Au system into three and four fragments of comparable size, Phys. Rev. C 81(2), 024605 (2010)

    ADS  Google Scholar 

  303. J. L. Tian, X. Z. Wu, Z. X. Li, K. Zhao, Y. Zhang, X. Li, and S. Yan, Mechanism of ternary breakup in the reaction 197Au+197Au at 15A MeV, Phys. Rev. C 82(5), 054608 (2010)

    ADS  Google Scholar 

  304. X. Li, J. L. Tian, S. W. Yan, J. X. Cheng, and X. Jiang, Angular distributions of fragments produced in ternary reaction of 197Au+197Au at 15A MeV, Mod. Phys. Lett. A 26(06), 449 (2011)

    ADS  MATH  Google Scholar 

  305. Y. Zhang, C. Zhou, J. Chen, N. Wang, K. Zhao, and Z. X. Li, Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions, Sci. China Phys. Astro. Mech. 58(11), 112002 (2015)

    Google Scholar 

  306. J. B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, and C. Hamilton, Caloric curves and critical behavior in nuclei, Phys. Rev. C 65(3), 034618 (2002)

    ADS  Google Scholar 

  307. M. D'Agostino, M. Bruno, F. Gulminelli, R. Bougault, F. Cannata, P. Chomaz, F. Gramegna, N. Le Neidre, A. Moroni, and G. Vannini, Experimental signals of phase transition, Nucl. Phys. A 734, 512 (2004)

    ADS  Google Scholar 

  308. J. Richert and P. Wagner, Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter, Phys. Rep. 350(1), 1 (2001)

    ADS  MATH  Google Scholar 

  309. P. Chomaz, M. Colonna, and J. Randrup, Nuclear spinodal fragmentation, Phys. Rep. 389(5-6), 263 (2004)

    ADS  Google Scholar 

  310. A. M. Poskanzer, G. W. Butler, and E. K. Hyde, Fragment production in the interaction of 5.5 GeV protons with uranium, Phys. Rev. C 3(2), 882 (1971)

    ADS  Google Scholar 

  311. G. D. Westfall, R. G. Sextro, A. M. Poskanzer, A. M. Zebelman, G. W. Butler, and E. K. Hyde, Energy spectra of nuclear fragments produced by high energy protons, Phys. Rev. C 17(4), l368 (1978)

    ADS  Google Scholar 

  312. J. Pochodzalla, T. Möhlenkamp, T. Rubehn, A. Schüttauf, A. Wörner, et al., Probing the nuclear liquid-gas phase transition, Phys. Rev. Lett. 75(6), 1040 (1995)

    ADS  Google Scholar 

  313. M. Baldo, G. F. Burgio, and A. Rapisarda, Dynamics of fragment formation in the nuclear spinodal region, Phys. Rev. C 51(1), 198 (1995)

    ADS  Google Scholar 

  314. S. K. Nayak, R. Ramaswamy, and C. Chakravarty, Maximal Lyapunov exponent in small atomic clusters, Phys. Rev. E 51(4), 3376 (1995)

    ADS  Google Scholar 

  315. Y. Zhang, X. Wu, and Z. Li, Connection between the largest Lyapunov exponent, density fluctuation, and multifragmentation in excited nuclear systems, Phys. Rev. C 69(4), 044609 (2004)

    ADS  Google Scholar 

  316. J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(3), 617 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  317. Y. Gu, Evidences of classical and quantum chaos in the time evolution of nonequilibrium ensembles, Phys. Lett. A 149(2-3), 95 (1990)

    ADS  Google Scholar 

  318. J. Łukasik, G. Auger, M. L. Begemann-Blaich, N. Bellaize, R. Bittiger, et al., Directed and elliptic flow in 197Au+197Au at intermediate energies, Phys. Lett. B 608(3-4), 223 (2005)

    ADS  Google Scholar 

  319. C. Pinkenburg, et al. (E895 Collaboration), Prepared for Centennial Celebration and Meeting of the American Physical Society (Combining Annual APS General Meeting and the Joint Meeting of the APS and the AAPT), Atlanta, Georgia, Mar. 20–26 1999

    Google Scholar 

  320. P. Chung, et al. (E895 Collaboration),Centrality and momentum-selected elliptic flow: Tighter constraints for the nuclear equation of state, Phys. Rev. C 66(2), 021901 (2002)

    ADS  Google Scholar 

  321. C. Alt, et al. (NA49 Collaboration), Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40A and 158A GeV, Phys. Rev. C 68(3), 034903 (2003)

    ADS  Google Scholar 

  322. A. Andronic, et al. (FOPI Collaboration), Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state, Phys. Lett. B 612(3-4), 173 (2005)

    ADS  Google Scholar 

  323. Y. J. Wang, C. C. Guo, Q. F. Li, H. F. Zhang, Y. Leifels, and W. Trautmann, Constraining the high-density nuclear symmetry energy with the transverse-momentum-dependent elliptic flow, Phys. Rev. C 89(4), 044603 (2014)

    ADS  Google Scholar 

  324. Y. J. Wang, C. C. Guo, Q. F. Li, Z. X. Li, J. Su, and H. F. Zhang, Influence of differential elastic nucleon-nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies, Phys. Rev. C 94(2), 024608 (2016)

    ADS  Google Scholar 

  325. P. C. Li, Y. J. Wang, Q. F. Li, and H. F. Zhang, Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain, Nucl. Sci. Tech. 29(12), 177 (2018)

    Google Scholar 

  326. Y. J. Wang, C. C. Guo, Q. F. Li, A. Le F'evre, Y. Leifels, and W. Trautmann, Determination of the nuclear incom-pressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A-1.0A GeV, Phys. Lett. B 778, 207 (2018)

    ADS  Google Scholar 

  327. W. Gudowski, Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation, Nucl. Phys. A 654(1-2), c436 (1999)

    ADS  Google Scholar 

  328. M. Casolino, V. Bidoli, A. Morselli, L. Narici, M. P. De Pascale, et al., Dual origins of light fashes seen in space, Nature 422(6933), 680 (2003)

    ADS  Google Scholar 

  329. B. Larsson, PhD thesis, Uppsala University, 1962

  330. J. H. Trainor, Instrument and spacecraft faults associated with nuclear radiation in space, Adv. Space Res. 14(10), 685 (1994)

    ADS  Google Scholar 

  331. M. S. Smith and K. E. Rehm, Nuclear astrophysics measurements with radioactive beams, Annu. Rev. Nucl. Part. Sci. 51(1), 91 (2001)

    ADS  Google Scholar 

  332. G. S. Bauer, Proceedings of the 2nd International Conference on Accelerator Driven Transmutation Technologies, p.159, Kalmar, Uppsala University, 1996

    Google Scholar 

  333. Tech. Rep. No. DOE/Er-0705, Department of Energy, 1997

  334. J. M. Carpenter, Pulsed spallation neutron sources for slow neutron scattering, Nucl. Instrum. Methods 145(1), 91 (1977)

    ADS  Google Scholar 

  335. C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P. Lawrence, R. J. Jensen, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. Sect. A 320(1–2), 336 (1992)

    ADS  Google Scholar 

  336. T. Takizuka, Proceedings of the International Conference on Accelerator-driven Transmutation Technologies and Application, p. 64, AIP Press, Woodbury, NY, 1995

    Google Scholar 

  337. F. Rejmund, B. Mustapha, P. Armbruster, J. Benlliure, M. Bernas, et al., Measurement of isotopic cross sections of spallation residues in 800A MeV 197Au+p collisions, Nucl. Phys. A 683(1-4), 540 (2001)

    ADS  Google Scholar 

  338. B. Fernández-Dominguez, P. Armbruster, L. Audouin, J. Benlliure, M. Bernas, et al., Nuclide cross-sections of fission fragments in the reaction 208Pb+p at 500A MeV, Nucl. Phys. A 747(2-4), 227 (2005)

    ADS  Google Scholar 

  339. L. Audouin, L. Tassan-Got, P. Armbruster, J. Benlliure, M. Bernas, et al., Evaporation residues produced in spallation of 208Pb by protons at 500A MeV, Nucl. Phys. A 768(1–2), 1 (2006)

    ADS  Google Scholar 

  340. J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, J. P. Dufour, et al., Isotopic production cross sections of fission residues in 197Au-on-proton collisions at 800A MeV, Nucl. Phys. A 683(1-4), 513 (2001)

    ADS  Google Scholar 

  341. H. Iwase, K. Niita, and T. Nakamura, Development of general-purpose particle and heavy ion transport Monte Carlo code, J. Nucl. Sci. Technol. 39(11), 1142 (2002)

    Google Scholar 

  342. Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Relativistic nuclear collisions at 10A GeV energies from p+Be to Au+Au with the hadronic cascade model, Phys. Rev. C 61(2), 024901 (2000)

    ADS  Google Scholar 

  343. K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, Analysis of the (N,xN) reactions by quantum molecular dynamics plus statistical decay model, Phys. Rev. C 52(5), 2620 (1995)

    ADS  Google Scholar 

  344. A. Boudard, J. Cugnon, S. Leray, and C. Volant, Intranuclear cascade model for a comprehensive description of spallation reaction data, Phys. Rev. C 66(4), 044615 (2002)

    ADS  Google Scholar 

  345. L. Ou, Z. Li, X. Wu, J. Tian, and W. Sun, A study of proton-induced spallation reactions by the improved quantum molecular dynamics model plus statistical decay models, J. Phys. G 36(12), 125104 (2009)

    ADS  Google Scholar 

  346. L. Ou, Y. Zhang, J. Tian, and Z. Li, Analysis of intermediate energy proton-induced spallation reactions by an improved quantum molecular dynamics plus statistical decay model, J. Phys. G 34(5), 827 (2007)

    Google Scholar 

  347. L. Ou, Y. Zhang, and Z. Li, Mechanism of proton-induced reactions on targets 16O, 27Al, 56Fe, 112Cd, 184W and 208Pb at Ep = 800 MeV, Chin. Phys. Lett. 24(1), 72 (2007)

    ADS  Google Scholar 

  348. D. Wei, L. Mao, N. Wang, M. Liu, and L. Ou, Further study on mechanism of production of light complex particles in nucleon-induced reactions, Nucl. Phys. A 933, 114 (2015)

    ADS  Google Scholar 

  349. D. Wei, N. Wang, and L. Ou, Mechanism of the production of light complex particles in nucleon-induced reactions, J. Phys. G 41(3), 035104 (2014)

    ADS  Google Scholar 

  350. M. M. Meier, W. B. Amian, C. A. Goulding, G. L. Morgan, and C. E. Moss, differential neutron production cross sections for 256-MeV protons, Nucl. Sci. Eng. 110(3), 289 (1992)

    Google Scholar 

  351. Y. V. Trebukhovsky, Y. E. Titarenko, et al., LANL Report LA-UR-03-6071; Los Alamos, 2003; ITEP Print 03-03, Moscow, 2003

    Google Scholar 

  352. Y. V. Trebukhovsky, Y. E. Titarenko, V. F. Batyaev, R. D. Mulambetov, S. V. Mulambetova, et al., Double-differential cross sections for the production of neutrons from Pb, W, Zr, Cu, and Al targets irradiated with 0.8-, 1.0-, and 1.6-GeV protons, Phys At. Nucl. 68(1), 3 (2005)

    Google Scholar 

  353. R. E. Chrien, T. J. Krieger, R. J. Sutter, M. May, H. Palevsky, R. L. Stearns, T. Kozlowski, and T. Bauer, Proton spectra from 800 MeV protons on selected nuclides, Phys. Rev. C 21(3), 1014 (1980)

    ADS  Google Scholar 

  354. C. Villagrasa-Canton, A. Boudard, J. E. Ducret, B. Fernandez, S. Leray, et al., Spallation residues in the reaction 56Fe+p at 0.3A, 0.5A, 0.75A, 1.0A, and 1.5A GeV, Phys. Rev. C 75(4), 044603 (2007)

    Google Scholar 

  355. H. Machner, D. G. Aschman, K. Baruth-Ram, J. Carter, A. A. Cowley, et al., Isotopic production cross sections in proton-nucleus collisions at 200 MeV, Phys. Rev. C 73(4), 044606 (2006)

    ADS  Google Scholar 

  356. Y. Uozumi, P. Evtoukhovitch, H. Fukuda, M. Imamura, H. Iwamoto, et al., Magnitude factor systematics of Kalbach phenomenology for reactions emitting helium and lithium ions, Nucl. Instrum. Methods Phys. Res. A 571(3), 743 (2007)

    ADS  Google Scholar 

  357. A. Bohnet, N. Ohtsuka, J. Aichelin, R. Linden, and A. Faessler, Quantum molecular-dynamics approach to heavy-ion collisions with Brueckner G-matrix cross sections, Nucl. Phys. A 494(2), 349 (1989)

    ADS  Google Scholar 

  358. H. J. Schulze, A. Schnell, G. Röpke, and U. Lombardo, Nucleon-nucleon cross sections in nuclear matter, Phys. Rev. C 55(6), 3006 (1997)

    ADS  Google Scholar 

  359. G. Q. Li and R. Machleidt, Microscopic calculation of in-medium nucleon-nucleon cross sections, Phys. Rev. C. 48, 1702 (1993)

    ADS  Google Scholar 

  360. G. Q. Li and R. Machleidt, Microscopic calculation of in-medium proton-proton cross sections, Phys. Rev. C 49, 566 (1994)

    ADS  Google Scholar 

  361. C. Fuchs, A. Faessler, and M. El-Shabshiry, Of-shell behavior of the in-medium nucleon-nucleon cross section, Phys. Rev. C 64(2), 024003 (2001)

    ADS  Google Scholar 

  362. Y. H. Cai, H. Q. Song, and U. Lombardo, In-medium nucleon-nucleon cross section, Chin. Phys. Lett. 13(6), 420 (1996)

    ADS  Google Scholar 

  363. H. F. Zhang, U. Lombardo, and W. Zuo, Transport parameters in neutron stars from in-medium NN cross sections, Phys. Rev. C 82(1), 015805 (2010)

    ADS  Google Scholar 

  364. S. Huber and J. Aichelin, Production of Δ- and N*-resonances in the one-boson exchange model, Nucl. Phys. A 573(4), 587 (1994)

    ADS  Google Scholar 

  365. R. Machleidt, K. Holinde, and C. Elster, The bonn meson-exchange model for the nucleon-nucleon interaction, Phys. Rep. 149(1), 1 (1987)

    ADS  Google Scholar 

  366. A. Larionov and U. Mosel, The NNN Δ cross section in nuclear matter, Nucl. Phys. A 728(1-2), 135 (2003)

    ADS  Google Scholar 

  367. G. Mao, Z. Li, Y. Zhuo, Y. Han, and Z. Yu, Study of in-medium NN inelastic cross section from relativistic Boltzmann-Uehling-Uhlenbeck approach, Phys. Rev. C 49(6), 3137 (1994)

    ADS  Google Scholar 

  368. G. J. Mao, Z. X. Li, Y. Z. Zhuo, and Z. Q. Yu, Medium effects on the NN inelastic cross section in relativistic heavy-ion collisions, Phys. Lett. B 327(3-4), 183 (1994)

    ADS  Google Scholar 

  369. Q. Li, Z. Li, and G. Mao, Isospin dependence of nucleon-nucleon elastic cross section, Phys. Rev. C 62(1), 014606 (2000)

    ADS  Google Scholar 

  370. G. Mao, Relativistic Microscopic Quantum Transport Equation, NOVA, 2005

    Google Scholar 

  371. Q. Li and Z. Li, The isospin dependent nucleon-nucleon inelastic cross section in the nuclear medium, Phys. Lett. B 773, 557 (2017)

    ADS  Google Scholar 

  372. Y. Cui, Y. Zhang, and Z. Li, Effect of energy conservation on the in-medium NNN Δ cross section in isospin-asymmetric nuclear matter, Phys. Rev. C 98(5), 054605 (2018)

    ADS  Google Scholar 

  373. Q. Pan and P. Danielewicz, From sideward flow to nuclear compressibility, Phys. Rev. Lett. 70, 2062 (1993) [Erratum Phys. Rev. Lett. 70, 3523 (1993)]

    ADS  Google Scholar 

  374. L. Shi and P. Danielewicz, Nuclear isospin diffusivity, Phys. Rev. C 68(6), 064604 (2003)

    ADS  Google Scholar 

  375. W. Reisdorf, et al. (FOPI Collaboration), Nuclear stopping from 0.09A to 1.93A GeV and its correlation to flow, Phys. Rev. Lett. 92(23), 232301 (2004)

    ADS  Google Scholar 

  376. D. Persram and C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects, Phys. Rev. C 65(6), 064611 (2002)

    ADS  Google Scholar 

  377. O. Lopez, D. Durand, G. Lehaut, B. Borderie, J. D. Frankland, et al., In-medium effects for nuclear matter in the Fermi-energy domain, Phys. Rev. C 90(6), 064602 (2014)

    ADS  Google Scholar 

  378. Y. X. Zhang, Y. J. Wang, M. Colonna, P. Danielewicz, A. Ono, et al., Comparison of heavy-ion transport simulations: Collision integral in a box, Phys. Rev. C 97(3), 034625 (2018)

    ADS  Google Scholar 

  379. L. Ou and X. He, In-medium nucleon-nucleon elastic cross-sections determined from the nucleon induced reaction cross-section data, Chin. Phys. C 43(4), 044103 (2019)

    ADS  Google Scholar 

  380. D. Vretenar, T. Niksic, and P. Ring, Relativistic nuclear energy density functionals, Int. J. Mod. Phys. E 19(04), 548 (2010)

    ADS  Google Scholar 

  381. P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 73, 193 (1996)

    ADS  Google Scholar 

  382. P. Ring, Covariant density functional theory and applications to finite nuclei, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 175 (2004)

    ADS  Google Scholar 

  383. R. Brockmann, Relativistic Hartree-Fock description of nuclei, Phys. Rev. C 18(3), 1510 (1978)

    ADS  Google Scholar 

  384. C. J. Horowitz and B. D. Serot, Properties of nuclear and neutron matter in a relativistic Hartree-Fock theory, Nucl. Phys. A 399(2), 529 (1983)

    ADS  Google Scholar 

  385. A. Bouyssy, J. F. Mathiot, N. Van Giai, and S. Marcos, Relativistic description of nuclear systems in the Hartree-Fock approximation, Phys. Rev. C 36(1), 380 (1987)

    ADS  Google Scholar 

  386. W. H. Long, N. V. Giai, and J. Meng, Density-dependent relativistic Hartree-Fock approach, Phys. Lett. B 640(4), 150 (2006)

    ADS  Google Scholar 

  387. T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Adjusting parameters to binding energies, Phys. Rev. C 78(3), 034318 (2008)

    ADS  Google Scholar 

  388. G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, New relativistic mean-field interaction with density-dependent meson-nucleon couplings, Phys. Rev. C 71(2), 024312 (2005)

    ADS  Google Scholar 

  389. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)

    ADS  Google Scholar 

  390. T. H. R. Skyrme, CVII. The nuclear surface, Philos. Mag. 1(11), 1043 (1956)

    ADS  MATH  Google Scholar 

  391. D. Vautherin and D. M. Brink, Hartree-Fock calculations with Skyrme's interaction (I): Spherical nuclei, Phys. Rev. C 5(3), 626 (1972)

    ADS  Google Scholar 

  392. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaefer, A Skyrme parametrization from subnuclear to neutron star densities, Nucl. Phys. A 627(4), 710 (1997)

    ADS  Google Scholar 

  393. J. Dechargé and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C 21(4), 1568 (1980)

    ADS  Google Scholar 

  394. M. Kleban, B. Nerlo-Pomorska, J. F. Berger, J. Decharge, M. Girod, and S. Hilaire, Global properties of spherical nuclei obtained from Hartree-Fock-Bogoliubov calculations with the Gogny force, Phys. Rev. C 65(2), 024309 (2002)

    ADS  Google Scholar 

  395. B. Cochet, K. Bennaceur, J. Meyer, P. Bonche, and T. Duguet, Skyrme forces with extended density dependence, Int. J. Mod. Phys. E 13(01), 187 (2004)

    ADS  Google Scholar 

  396. P. G. Reinhard and M. Bender, Mean field: Relativistic versus non-relativistic, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 249 (2004)

    ADS  Google Scholar 

  397. B. D. Serot and J. D. Walecka, Recent progress in quantum hadrodynamics, Int. J. Mod. Phys. E 6(04), 515 (1997)

    ADS  Google Scholar 

  398. R. J. Furnstahl, Next generation relativistic models, in: A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 1 (2004)

    ADS  Google Scholar 

  399. M. Lutz, B. Friman, and Ch. Appel, Saturation from nuclear pion dynamics, Phys. Lett. B 474(1-2), 7 (2000)

    ADS  Google Scholar 

  400. P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Nuclear many-body dynamics constrained by QCD and chiral symmetry, Eur. Phys. J. A 17(4), 573 (2003)

    ADS  Google Scholar 

  401. P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry, Nucl. Phys. A 735(3-4), 449 (2004)

    ADS  Google Scholar 

  402. D. Vretenar and W. Weise, Exploring the nucleus in the context of low-energy QCD, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 65 (2004)

    ADS  Google Scholar 

  403. J. Dobaczewski, Ab initio derivation of model energy density functionals, J. Phys. G 43(4), 04LT01 (2016)

    Google Scholar 

  404. J. Bonnard, M. Grasso, and D. Lacroix, Energy-density functionals inspired by effective-field theories: Applications to neutron drops, Phys. Rev. C 98(3), 034319 (2018)

    ADS  Google Scholar 

  405. V. R. Pandharipande and R. B. Wiringa, Variations on a theme of nuclear matter, Rev. Mod. Phys. 51(4), 821 (1979)

    ADS  Google Scholar 

  406. A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58(3), 1804 (1998)

    ADS  Google Scholar 

  407. K. A. Brueckner and J. L. Gammel, Properties of nuclear matter, Phys. Rev. 109(4), 1023 (1958)

    ADS  MathSciNet  Google Scholar 

  408. M. Jaminon and C. Mahaux, Effective masses in relativistic approaches to the nucleon-nucleus mean field, Phys. Rev. C 40(1), 354 (1989)

    ADS  Google Scholar 

  409. W. Zuo, A. Lejeune, U. Lombardo, and J. F. Mathiot, Interplay of three-body interactions in the EOS of nuclear matter, Nucl. Phys. A 706(3-4), 418 (2002)

    ADS  MATH  Google Scholar 

  410. X. R. Zhou, G. F. Burgio, U. Lombardo, H. J. Schulze, and W. Zuo, Three-body forces and neutron star structure, Phys. Rev. C 69(1), 018801 (2004)

    ADS  Google Scholar 

  411. B. Haar and R. Malfiet, Nucleons, mesons and deltas in nuclear matter a relativistic Dirac-Brueckner approach, Phys. Rep. 149(4), 207 (1987)

    ADS  Google Scholar 

  412. R. Brockmann and R. Machleidt, Relativistic nuclear structure (I): Nuclear matter, Phys. Rev. C 42(5), 1965 (1990)

    ADS  Google Scholar 

  413. F. de Jong and H. Lenske, Relativistic Brueckner- Hartree-Fock calculations with explicit intermediate negative energy states, Phys. Rev. C 58(2), 890 (1998)

    ADS  Google Scholar 

  414. T. Gross-Boelting, C. Fuchs, and A. Faessler, Covariant representations of the relativistic Brueckner T-matrix and the nuclear matter problem, Nucl. Phys. A 648(1-2), 105 (1999)

    ADS  Google Scholar 

  415. E. Schiller and H. Müther, Correlations and the Dirac structure of the nucleon self-energy, Eur. Phys. J. A 11(1), 15 (2001)

    ADS  Google Scholar 

  416. C. Fuchs, The Relativistic Dirac-Brueckner Approach to Nuclear Matter, in: G. A. Lalazissis, P. Ring, and D. Vretenar (Eds.), Extended density functionals in nuclear structure physics, Lect. Notes Phys. 641, 119 (2004)

    ADS  Google Scholar 

  417. E. van Dalen, C. Fuchs, and A. Faessler, The relativistic Dirac-Brueckner approach to asymmetric nuclear matter, Nucl. Phys. A 744, 227 (2004)

    ADS  Google Scholar 

  418. E. N. E. Dalen, C. Fuchs, and A. Faessler, Momentum, density, and isospin dependence of symmetric and asymmetric nuclear matter properties, Phys. Rev. C 72(6), 065803 (2005)

    ADS  Google Scholar 

  419. H. Müther and A. Polls, Two-body correlations in nuclear systems, Prog. Part. Nucl. Phys. 45(1), 243 (2000)

    ADS  Google Scholar 

  420. W. H. Dickhof and C. Barbieri, Self-consistent Green's function method for nuclei and nuclear matter, Prog. Part. Nucl. Phys. 52(2), 377 (2004)

    ADS  Google Scholar 

  421. J. Carlson, J. Morales, V. R. Pandharipande, and D. G. Ravenhall, Quantum Monte Carlo calculations of neutron matter, Phys. Rev. C 68(2), 025802 (2003)

    ADS  Google Scholar 

  422. B. A. Li, L. W. Chen, G. C. Yong, and W. Zuo, Double neutron/proton ratio of nucleon emissions in isotopic reaction systems as a robust probe of nuclear symmetry energy, Phys. Lett. B 634(4), 378 (2006)

    ADS  Google Scholar 

  423. M. A. Famiano, T. Liu, W. G. Lynch, M. Mocko, A. M. Rogers, et al., Neutron and proton transverse emission ratio measurements and the density dependence of the asymmetry term of the nuclear equation of state, Phys. Rev. Lett. 97(5), 052701 (2006)

    ADS  Google Scholar 

  424. M. B. Tsang, T. X. Liu, L. Shi, P. Danielewicz, C. K. Gelbke, et al., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions, Phys. Rev. Lett. 92(6), 062701 (2004)

    ADS  Google Scholar 

  425. T. X. Liu, W. G. Lynch, M. B. Tsang, X. D. Liu, R. Shomin, et al., Isospin diffusion observables in heavy-ion reactions, Phys. Rev. C 76(3), 034603 (2007)

    ADS  Google Scholar 

  426. Z. Kohley, L. W. May, S. Wuenschel, A. Bonasera, K. Hagel, et al., Investigation of transverse collective flow of intermediate mass fragments, Phys. Rev. C 82(6), 064601 (2010)

    ADS  Google Scholar 

  427. Y. Zhang, J. Tian, W. Cheng, F. Guan, Y. Huang, et al., Long-time drift of the isospin degree of freedom in heavy ion collisions, Phys. Rev. C 95, 041602(R) (2017)

    ADS  Google Scholar 

  428. P. Russotto, M. D. Cozma, A. Le Fèvre, Y. Leifels, R. Lemmon, Q. Li, J. Łukasik, and W. Trautmann, Flow probe of symmetry energy in relativistic heavy-ion reactions, Eur. Phys. J. A 50(2), 38 (2014)

    ADS  Google Scholar 

  429. P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, and W. Trautmann, Symmetry energy from elliptic flow in 197Au+197Au, Phys. Lett. B 697(5), 471 (2011)

    ADS  Google Scholar 

  430. M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Constraints on the density dependence of the symmetry energy, Phys. Rev. Lett. 102(12), 122701 (2009)

    ADS  Google Scholar 

  431. P. Danielewicz and J. Lee, Symmetry energy (I): Semi-infinite matter, Nucl. Phys. A 818(1–2), 36 (2009)

    ADS  Google Scholar 

  432. C. J. Horowitz and J. Piekarewicz, Neutron star structure and the neutron radius of 208Pb, Phys. Rev. Lett. 86(25), 5647 (2001)

    ADS  Google Scholar 

  433. J. Piekarewicz, Unmasking the nuclear matter equation of state, Phys. Rev. C 69(4), 041301 (2004)

    ADS  Google Scholar 

  434. S. Yoshida and H. Sagawa, Isovector nuclear matter properties and neutron skin thickness, Phys. Rev. C 73(4), 044320 (2006)

    ADS  Google Scholar 

  435. E. Galichet, et al. (INDRA Collaboration), Isospin diffusion in 58Ni-induced reactions at intermediate energies (I): Experimental results, Phys. Rev. C 79(6), 064614 (2009)

    ADS  Google Scholar 

  436. R. S. Wang, Y. Zhang, Z. G. Xiao, J. L. Tian, Y. X. Zhang, et al., Time-dependent isospin composition of particles emitted in fission events following 40Ar+197Au at 35 MeV/u, Phys. Rev. C 89(6), 064613 (2014)

    ADS  Google Scholar 

  437. M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolf, et al., Constraints on the symmetry energy and neutron skins from experiments and theory, Phys. Rev. C 86(1), 015803 (2012)

    ADS  Google Scholar 

  438. J. M. Lattimer and A. W. Steiner, Constraints on the symmetry energy using the mass-radius relation of neutron stars, Eur. Phys. J. A 50(2), 40 (2014)

    ADS  Google Scholar 

  439. B. A. Li and L. W. Chen, Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies, Phys. Rev. C 72(6), 064611 (2005)

    ADS  Google Scholar 

  440. A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, et al., Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances, Phys. Rev. C 76(5), 051603 (2007)

    ADS  Google Scholar 

  441. G. Colò and P. Danielewicz, Constraints, limits and extensions for nuclear energy functionals, AIP Conf. Proc. 1128, 59 (2009)

    ADS  Google Scholar 

  442. L. Trippa, G. Colò, and E. Vigezzi, Giant dipole resonance as a quantitative constraint on the symmetry energy, Phys. Rev. C 77, 061304(R)

  443. L. Ou, Z. G. Xiao, H. Yi, N. Wang, M. Liu, and J. Tian, Dynamic isovector reorientation of deuteron as a probe to nuclear symmetry energy, Phys. Rev. Lett. 115(21), 212501 (2015)

    ADS  Google Scholar 

  444. S. Köhler, Skyrme force and the mass formula, Nucl. Phys. A 258(2), 301 (1976)

    ADS  Google Scholar 

  445. F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Static nuclear properties and the parametrisation of Skyrme forces, Nucl. Phys. A 420(2), 297 (1984)

    ADS  Google Scholar 

  446. J. Margueron, J. Navarro, and N. Van Giai, Instabilities of infinite matter with effective Skyrme-type interactions, Phys. Rev. C 66(1), 014303 (2002)

    ADS  Google Scholar 

  447. Q. Wu, Y. Zhang, Z. Xiao, R. Wang, Y. Zhang, Z. Li, N. Wang, and R. H. Showalter, Competition between Coulomb and symmetry potential in semi-peripheral heavy ion collisions, Phys. Rev. C 91(1), 014617 (2015)

    ADS  Google Scholar 

  448. T. Gaitanos, M. Di Toro, G. Ferini, M. Colonna, and H. H. Wolter, Isospin effects in intermediate energy heavy ion collisions, arXiv: nucl-th/0402041 (2004)

    Google Scholar 

  449. S. A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, High p t pions as probes of the dense phase of relativistic heavy ion collisions, Phys. Rev. C 50(4), 2167 (1994)

    ADS  Google Scholar 

  450. Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities, Phys. Rev. Lett. 102(6), 062502 (2009)

    ADS  Google Scholar 

  451. W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Symmetry energy and pion production in the Boltzmann-Langevin approach, Phys. Lett. B 718(4–5), 1510 (2013)

    ADS  Google Scholar 

  452. Z. Q. Feng and G. M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions, Phys. Lett. B 683(2-3), 140 (2010)

    ADS  Google Scholar 

  453. T. Song and C. M. Ko, Modifcations of the pion-production threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy, Phys. Rev. C 91(1), 014901 (2015)

    ADS  Google Scholar 

  454. M. D. Cozma, Constraining the density dependence of the symmetry energy using the multiplicity and average pT ratios of charged pions, Phys. Rev. C 95(1), 014601 (2017)

    ADS  Google Scholar 

  455. Z. Zhang and C. M. Ko, Medium effects on pion production in heavy ion collisions, Phys. Rev. C 95(6), 064604 (2017)

    ADS  Google Scholar 

  456. J. Hong and P. Danielewicz, Subthreshold pion production within a transport description of central Au+Au collisions, Phys. Rev. C 90(2), 024605 (2014)

    ADS  Google Scholar 

  457. L. Ou, Z. Li, Y. Zhang, and M. Liu, Effect of the splitting of the neutron and proton effective masses on the nuclear symmetry energy at finite temperatures, Phys. Lett. B 697(3), 246 (2011)

    ADS  Google Scholar 

  458. J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction, Phys. Rev. C 75(1), 014607 (2007)

    ADS  Google Scholar 

  459. J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter, Phys. Rev. C 77(1), 014302 (2008)

    ADS  Google Scholar 

  460. W. J. Xie and B. A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars, Astrophys. J. 883(2), 174 (2019)

    ADS  MathSciNet  Google Scholar 

  461. J. Margueron, R. Hofmann Casali, and F. Gulminelli, Equation of state for dense nucleonic matter from meta-modeling (I): Foundational aspects, Phys. Rev. C 97(2), 025805 (2018)

    ADS  Google Scholar 

  462. J. Margueron and F. Gulminelli, Effect of high-order empirical parameters on the nuclear equation of state, Phys. Rev. C 99(2), 025806 (2019)

    ADS  Google Scholar 

  463. N. B. Zhang and B. A. Li, Delineating effects of nuclear symmetry energy on the radii and tidal polarizabilities of neutron stars, J. Phys. G 46(1), 014002 (2019)

    ADS  Google Scholar 

  464. B. K. Agrawal, S. Shlomo, and V. K. Au, Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach, Phys. Rev. C 72(1), 014310 (2005)

    ADS  Google Scholar 

  465. L. W. Chen, B. J. Cai, C. M. Ko, B. A. Li, C. Shen, and J. Xu, Higher-order effects on the incompressibility of isospin asymmetric nuclear matter, Phys. Rev. C 80(1), 014322 (2009)

    ADS  Google Scholar 

  466. C. Mondal, B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, and X. Viñas, Interdependence of different symmetry energy elements, Phys. Rev. C 96, 021302(R) (2017)

    ADS  Google Scholar 

  467. M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfno, J. R. Stone, and P. D. Stevenson, Skyrme interaction and nuclear matter constraints, Phys. Rev. C 85(3), 035201 (2012)

    ADS  Google Scholar 

  468. P. A. M. Guichon and A. W. Thomas, Quark structure and nuclear effective forces, Phys. Rev. Lett. 93(13), 132502 (2004)

    ADS  Google Scholar 

  469. J. R. Stone, N. J. Stone, and S. A. Moszkowski, Incom-pressibility in finite nuclei and nuclear matter, Phys. Rev. C 89(4), 044316 (2014)

    ADS  Google Scholar 

  470. Y. Zhang, M. Liu, C. J. Xia, Z. Li, and S. K. Biswal, Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars, Phys. Rev. C 101(3), 034303 (2020)

    ADS  Google Scholar 

  471. J. Rizzo, M. Colonna, V. Baran, M. Di Toro, H. H. Wolter, and M. Zielinska-Pfabe, Isospin dynamics in peripheral heavy ion collisions at Fermi energies, Nucl. Phys. A 806(1-4), 79 (2008)

    ADS  Google Scholar 

  472. B. A. Li, C. B. Das, S. Das Gupta, and C. Gale, Momentum dependence of the symmetry potential and nuclear reactions induced by neutron-rich nuclei at RIA, Phys. Rev. C 69(1), 011603 (2004)

    ADS  Google Scholar 

  473. V. Giordano, M. Colonna, M. DiToro, V. Greco, and J. Rizzo, Isospin emission and flow at high baryon density: A test of the symmetry potential, Phys. Rev. C 81(4), 044611 (2010)

    ADS  Google Scholar 

  474. P. G. Reinhard and H. Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584(3), 467 (1995)

    ADS  Google Scholar 

  475. J. Friedrich and P. G. Reinhard, Skyrme-force parametrization: Least-squares ft to nuclear ground-state properties, Phys. Rev. C 33(1), 335 (1986)

    ADS  Google Scholar 

  476. D. D. S. Coupland, W. G. Lynch, M. B. Tsang, P. Danielewicz, and Y. Zhang, Influence of transport variables on isospin transport ratios, Phys. Rev. C 84(5), 054603 (2011)

    ADS  Google Scholar 

  477. D. D. S. Coupland, PhD thesis, Michigan State University, 2013

    Google Scholar 

  478. D. D. S. Coupland, M. Youngs, Z. Chajecki, W. G. Lynch, M. B. Tsang, et al., Probing effective nucleon masses with heavy-ion collisions, Phys. Rev. C 94(1), 011601 (2016)

    ADS  Google Scholar 

  479. S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and Engineers, 4th Ed., Springer, 2014

    Google Scholar 

  480. P. Morfouace, C. Y. Tsang, Y. Zhang, W. G. Lynch, M. B. Tsang, et al., Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses, Phys. Lett. B 799, 135045 (2019)

    Google Scholar 

  481. L. Li, Y. Zhang, Z. Li, N. Wang, Y. Cui, and J. Winkel-bauer, Impact parameter smearing effects on isospin sensitive observables in heavy ion collisions, Phys. Rev. C 97(4), 044606 (2018)

    ADS  Google Scholar 

  482. Z. Y. Sun, M. B. Tsang, W. G. Lynch, G. Verde, F. Amorini, et al., Isospin diffusion and equilibration for Sn+Sn collisions at E/A = 35 MeV, Phys. Rev. C 82, 051603(R) (2010)

    ADS  Google Scholar 

  483. E. E. Kolomeitsev, C. Hartnack, H. W. Barz, M. Bleicher, E. Bratkovskaya, et al., Transport theories for heavy-ion collisions in the 1A GeV regime, J. Phys. G 31(6), S741 (2005)

    Google Scholar 

  484. J. Xu, L. W. Chen, M. B. Tsang, H. Wolter, Y. X. Zhang, et al., Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions, Phys. Rev. C 93(4), 044609 (2016)

    ADS  Google Scholar 

  485. V. V. Desai, W. Loveland, K. McCaleb, R. Yanez, G. Lane, et al., The 136Xe+198Pt reaction: A test of models of multi-nucleon transfer reactions, Phys. Rev. C 99(4), 044604 (2019)

    ADS  Google Scholar 

  486. A. Ono, Dynamics of clusters and fragments in heavy-ion collisions, Prog. Part. Nucl. Phys. 105, 139 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

Yingxun Zhang acknowledges the supports in part by the National Natural Science Foundation of China (Grant Nos. 11875323, 11875125, 11475262, 10675172, 11075215, 11475262, 11790323, 11790324, 11790325, and 11961141003), the National Key R&D Program of China (Grant No. 2018YFA0404404), and the Continuous Basic Scientific Research Project (No. WDJC-2019-13). Ning Wang acknowledges the supports in part by the National Natural Science Foundation of China (Nos. U1867212 and 11422548), the Guangxi Natural Science Foundation (Nos. 2015GXNSFDA139004, 2017GXNSFGA198001). Qingfeng Li acknowledges the supports in part by the National Natural Science Foundation of China (Nos. 11875125, 11847315, 11375062, 11505057, 11947410, and 11747312), and the Zhejiang Provincial Natural Science Foundation of China (No. LY18A050002), and the “Ten-Thousand Talent Program” of Zhejiang Province. Junlong Tian acknowledges the supports in part by the National Science Foundation of China (Nos. 11961131010 and 11475004). Li Ou acknowledges the supports in part by the National Natural Science Foundation of China (No. 11965004), and the Natural Science Foundation of Guangxi Province (No. 2016GXNSFFA380001), Foundation of Guangxi Innovative Team and Distinguished Scholar in Institutions of Higher Education. Min Liu acknowledges the supports in part by the National Natural Science Foundation of China (No. 11875323). Kai Zhao acknowledges the supports in part by the National Natural Science Foundation of China (Nos. 11675266, 11005155, 11475262, 11275052, 11375062, 11547312, and 11275068) and the National Key Basic Research Development Program of China (Nos. 2007CB209900 and 2013CB834404). Xizhen Wu acknowledges the supports in part by the National Natural Science Foundation of China (Nos. 10235020, 10979023, 11005155, 11365004, 11475004, and 11675266). Zhuxia Li acknowledges the supports in part by the National Natural Science Foundation of China (Nos. 19975073, 10175093, 10175089, 10235030, 11275052, 11375062, 11475262, 11475004, 11875323, and 11875125), and the National Key Basic Research Development Program of China (Nos. G20000774 and 2007CB209900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu or Zhu-Xia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Wang, N., Li, QF. et al. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020). https://doi.org/10.1007/s11467-020-0961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0961-9

Keywords

Navigation