Skip to main content
Log in

Construction of developable surfaces using generalized C-Bézier bases with shape parameters

  • Original Article
  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel method for constructing developable surfaces using generalized C-Bézier bases with shape parameters. Based on the duality between points and planes in 3D projective space, the generalized developable C-Bézier surfaces, whose shape can be adjusted by changing multiple shape parameters, are designed using control planes with extensional C-Bézier basis functions. With the shape parameters taking different values, a family of developable surfaces can be constructed, which keeps most of characteristics of classic developable Bézier surfaces. Furthermore, some interesting properties of the new developable surfaces, as well as the geometric continuity conditions between two adjacent generalized developable C-Bézier surfaces, are investigated. Finally, we illustrate the convenience and efficiency of the proposed methods by several convictive and representative numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aumann G (2003) A simple algorithm for designing developable Bézier surfaces. Comput Aided Geom Des 20(8):601–619

    MATH  Google Scholar 

  • Aumann G (2004) Degree elevation and developable Bézier surfaces. Comput Aided Geom Des 21(7):661–670

    MATH  Google Scholar 

  • Bodduluri R, Ravani B (1993) Design of developable surfaces using duality between plane and point geometries. Comput Aided Des 25(10):621–632

    MATH  Google Scholar 

  • Bodduluri R, Ravani B (1994) Geometric design and fabrication of developable Bézier and B-spline surfaces. J Mech Des 116(4):1042–1048

    Google Scholar 

  • Chen M, Tang K (2013) G2 quasi-developable Bézier surface interpolation of two space curves. Comput Aided Des 45(11):1365–1377

    MathSciNet  Google Scholar 

  • Chen DR, Wang GJ (2003a) Developable Bézier parametric surfaces. J Comput Aided Des Comput Graph 15(5):570–575

    Google Scholar 

  • Chen Q, Wang G (2003b) A class of Bézier-like curves. Comput Aided Geom Des 20(1):29–39

    MATH  Google Scholar 

  • Chu CH, Sequin CH (2002) Developable Bézier patches properties and design. Comput Aided Des 34(5):511–527

    MATH  Google Scholar 

  • Elber G (1995) Model fabrication using surface layout projection. Comput Aided Des 27(4):283–291

    MATH  Google Scholar 

  • Farin G (2002) Curves and surfaces for CAGD: a practical guide, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Fernandez-Jambrina L (2007) B-spline control nets for developable surfaces. Comput Aided Geom Des 24(4):189–199

    MathSciNet  MATH  Google Scholar 

  • Frey W, Bindschadler D (1993) Computer aided design of a class of developable Bézier surfaces, vol 8057. General Motors R & D Publication, New York

    Google Scholar 

  • Gunter W, Peter F (1988) Computer-aided treatment of developable surfaces. Comput Graph 12(1):39–51

    MathSciNet  Google Scholar 

  • Hu G, Cao HX, Qin XQ et al (2017) Geometric design and continuity conditions of developable λ-Bézier surfaces. Adv Eng Soft 114:235–245

    Google Scholar 

  • Hu G, Bo CC, Wei G, Qin XQ (2020) Shape-adjustable generalized Bézier surfaces: construction and its geometric continuity conditions. Appl Math Comput 378:125215

    MathSciNet  MATH  Google Scholar 

  • Hwang HD, Yoon SH (2015) Constructing developable surfaces by wrapping cones and cylinders. Comput Aided Des 58:230–235

    Google Scholar 

  • Li CY, Wang RH, Zhu CG (2011) Design and G1 connection of developable surfaces through Bézier geodesics. Appl Math Comput 218(7):3199–3208

    MathSciNet  MATH  Google Scholar 

  • Li CY, Wang RH, Zhu CG (2013) An approach for designing a developable surface through a given line of curvature. Comput Aided Des 45(3):621–627

    Google Scholar 

  • Lin SH, Wang GZ (2005) Extension of definition interval for C-curves. J Comput Aided Des Comput Graph 17(10):2281–2285

    Google Scholar 

  • Liu Y, Pottman H, Wallner J et al (2006) Geometric modeling with conical meshes and developable surfaces. In: ACM SIGGRAPH, pp 681–689

  • Mandal C, Qin H, Vemuri BC (2000) Dynamic modeling of butterfly subdivision surfaces. IEEE Trans Visual Comput Graph 6(3):265–287

    Google Scholar 

  • Pottmann H, Farin G (1995) Developable rational Bézier and B-spline surfaces. Comput Aided Geom Des 12(5):513–531

    MATH  Google Scholar 

  • Pottmann H, Wallner J (1998) Approximation algorithms for developable surfaces. Comput Aided Geom Des 16(6):539–556

    MathSciNet  MATH  Google Scholar 

  • Schneider M (1997) Interpolation with developable strip-surfaces consisting of cylinders and cones. In: Proceedings of the international conference on mathematical methods for curves and surfaces II Lillehammer, 1997. Vanderbilt University, 1998, pp 437–444

  • Tang C, Bo P, Wallner J, Pottman H (2016) Interactive design of developable surfaces. ACM Trans Graph 35(2):1–12

    Google Scholar 

  • Yang JQ, Zhou M, Ye ZL et al (2007) Geometric design of adjustably developable surfaces. China Mech Eng 18(12):1425–1429

    Google Scholar 

  • Zhang XW, Wang GJ (2006) A new algorithm for designing developable Bézier surfaces. J Zhejiang Univ Sci A 7(12):2050–2056

    MATH  Google Scholar 

  • Zhao HY, Wang GJ (2008) A new method for designing a developable surface utilizing the surface pencil through a given curve. Prog Nat Sci 18(1):105–110

    MathSciNet  Google Scholar 

  • Zhou M, Peng GH, Ye ZL (2004) Design of developable surfaces by using duality between plane and point geometries. J Comput Aided Des Comput Graph 16(10):1401–1406

    Google Scholar 

  • Zhou M, Yang JQ, Zheng HC, Song WJ (2013) Design and shape adjustment of developable surfaces. Appl Math Model 37:3789–3801

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank to the anonymous reviewers for their insightful suggestions and recommendations, which led to the improvements of presentation and content of the paper. This work is supported by the National Natural Science Foundation of China (Nos. 51875454 and 11702214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by Frederic Valentin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. The proof of the terminal properties for generalized C-Bézier basis functions

Proof

By induction on n. When n = 2, from (4) and (5), we obtain

$$ w_{0,2} (0;\,\alpha_{1} ) = 1,\;w_{2,2} (1;\,\alpha_{2} ) = \frac{{1 - \cos \alpha_{2} }}{{1 - \cos \alpha_{2} }} = 1, $$
$$ w_{1,2}^{(0)} (0;\,\alpha_{1} ,\alpha_{2} ) = w_{1,2} (0;\,\alpha_{1} ,\alpha_{2} ) = 0,\;w_{2,2}^{(0)} (0;\,\alpha_{2} ) = w_{2,2} (0;\,\alpha_{2} ) = \frac{1 - \cos 0}{{1 - \cos \alpha_{2} }} = 0, $$
$$ w_{{{0},{2}}}^{{(1)}} (0;\,\alpha_{{1}} ) = - \delta_{{{0},1}} w_{{{0},{1}}} (0;\alpha_{{1}} ) = - \delta_{{{0},1}} ,w_{{{2},{2}}}^{{(1)}} (0;\,\alpha_{{2}} ) = \delta_{1,1} w_{{1,{1}}} (0;\alpha_{2} ) = \delta_{1,1} \times 0 = 0, $$
$$ w_{0,2}^{(0)} (1;\,\alpha_{1} ) = w_{0,2} (1;\,\alpha_{1} ) = \frac{1 - \cos 0}{{1 - \cos \alpha_{1} }} = 0,\;w_{0,2}^{(1)} (1;\,\alpha_{1} ) = \left. {\frac{{\alpha_{1} \sin (\alpha_{1} - \alpha_{1} t)}}{{1 - \cos \alpha_{1} }}} \right|_{t = 1} = 0, $$
$$ w_{{{1},{2}}}^{{(0)}} ({1};\,\alpha_{{1}} ,\alpha_{{2}} ) = w_{{{1},{2}}} ({1};\,\alpha_{{1}} ,\alpha_{{2}} ) = \frac{{\cos (\alpha_{1} - \alpha_{1} ) - {\cos}\alpha_{1} }}{{1 - {\cos}\alpha_{1} }} - \frac{{1 - \cos (\alpha_{2} )}}{{1 - {\cos}\alpha_{2} }} = 0, $$
$$ w_{{{1},{2}}}^{{(1)}} ({0};\,\alpha_{{1}} ,\alpha_{{2}} ) = \left. {\left[ {\delta_{{0,1}} w_{{0,{1}}} (t;\alpha_{1} ) - \delta_{{1,1}} w_{{1,{1}}} (t;\alpha_{2} )} \right]} \right|_{t = 0} = \delta_{{0,1}} \times 1 - \delta_{{1,1}} \times 0 = \delta_{{0,1}} , $$
$$ w_{{{2},{2}}}^{{(2)}} ({0};\,\alpha_{{2}} ) = \delta_{{1,1}} w_{{{1},1}}^{{(1)}} (0;\,\alpha_{{2}} ) = \delta_{{1,1}} \delta (\alpha_{{2}} ),\,\;\delta (\alpha_{{2}} ) = \frac{{\alpha_{{2}} }}{{{\sin}\alpha_{2} }}. $$

Now assume the terminal properties in (9) hold for n = r. When n = r + 1, from formula (6) and the inductive hypothesis, for any \(i = {0},{1}, \ldots ,r + 1\), we have

  1. a.

    for t = 0, \(w_{0,r + 1} (0{\kern 1pt} ;\,\alpha_{1} ) = 1 - \int_{0}^{{0}} {\delta_{0,r - 1} w_{0,r - 1} {(}x;\alpha_{1} {\text{)d}}x} = 1,\)

    $$ w_{i,r + 1}^{(0)} (0;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = w_{i,r + 1} (0;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = 0,\;i = 1,2, \ldots ,r,\;w_{i,r + 1}^{(0)} (0;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = w_{i,r + 1} (0;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = 0,\;i = 1,2, \ldots ,r, $$
    $$ w_{i,r + 1}^{(0)} (0;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = w_{i,r + 1} (0;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = 0,\;i = 1,2, \ldots ,r,\;w_{r + 1,r + 1}^{(0)} (0;\,\alpha_{r + 1} ) = w_{r + 1,r + 1} (0;\,\alpha_{r + 1} ) = 0, $$
    $$ \begin{aligned} w_{i,r + 1}^{(j)} (0;\,\alpha_{i} ,\alpha_{i + 1} ) & = \left. {\frac{{{\text{d}}^{j} }}{{{\text{d}}t^{j} }}\left[ {\int_{0}^{t} {\left[ {\delta_{i - 1,r} \tilde{w}_{i - 1,r} (x;\alpha_{i} ) - \delta_{i,r} \tilde{w}_{i,r} (x;\alpha_{i + 1} )} \right]{\text{d}}x} } \right]} \right|_{t = 0} \\ & = \left. {\left[ {\delta_{i - 1,r} \tilde{w}_{i - 1,r}^{(j - 1)} (t;\alpha_{i} ) - \delta_{i,r} \tilde{w}_{i,r}^{(j - 1)} (t;\alpha_{i + 1} )} \right]} \right|_{t = 0} \\ & = \delta_{i - 1,r} w_{i - 1,r}^{(j - 1)} (0;\alpha_{i} ,\alpha_{i} ) - \delta_{i,r} w_{i,r}^{(j - 1)} (0;\alpha_{i + 1} ,\alpha_{i + 1} ) \\ & = 0,\;\,j = {1},{2}, \ldots ,i - 1,\,\;i = 2,3, \ldots ,r - 1, \\ \end{aligned} $$
    $$ \begin{aligned} w_{r,r + 1}^{(j)} (0;\,\alpha_{r} ,\alpha_{{r + {1}}} ) & = \left. {\frac{{{\text{d}}^{j} }}{{{\text{d}}t^{j} }}\left[ {\int_{0}^{t} {\left[ {\delta_{r - 1,r} \tilde{w}_{r - 1,r} (x;\alpha_{r} ) - \delta_{r,r} w_{r,r} (x;\alpha_{r + 1} )} \right]{\text{d}}x} } \right]} \right|_{t = 0} \\ & = \left. {\left[ {\delta_{r - 1,r} \tilde{w}_{r - 1,r}^{(j - 1)} (t;\alpha_{r} ) - \delta_{r,r} w_{r,r}^{(j - 1)} (t;\alpha_{r + 1} )} \right]} \right|_{t = 0} \\ & = \delta_{r - 1,r} w_{r - 1,r}^{(j - 1)} (0;\alpha_{r} ,\alpha_{r} ) - \delta_{r,r} w_{r,r}^{(j - 1)} (0;\alpha_{r + 1} ) \\ & = 0,\,\;j = {1},{2}, \ldots ,r - 1, \\ \end{aligned} $$
    $$ w_{r + 1,r + 1}^{(j)} (0;\,\alpha_{r + 1} ) = \left. {\frac{{{\text{d}}^{j} }}{{{\text{d}}t^{j} }}\left[ {\int_{0}^{t} {\delta_{r,r} w_{r,r} {(}x;\alpha_{r + 1} {\text{)d}}x} } \right]} \right|_{t = 0} = \delta_{r,r} w_{r,r}^{(j - 1)} {(}0;\alpha_{r + 1} {)} = 0,\,\;j = {1},{2}, \ldots ,r; $$
    $$ \begin{aligned} w_{{{0},r + {1}}}^{{(1)}} (0;\,\alpha_{{1}} ) & = \left. {\frac{{\text{d}}}{{{\text{d}}t}}\left[ {1 - \int_{0}^{t} {\delta_{0,r} w_{0,r} {(}x;\alpha_{1} {\text{)d}}x} } \right]} \right|_{t = 0} = \left. {\left[ { - \delta_{0,r} w_{0,r} {(}t;\alpha_{1} {)}} \right]} \right|_{t = 0} = - \delta_{0,(r + 1) - 1} w_{0,r} {(0}{\kern 1pt} ;\alpha_{1} {)} \\ & = - \delta_{0,(r + 1) - 1} \times {1} = - \delta_{{0,(r + {1}) - 1}} ; \\ \end{aligned} $$
  2. b.

    for t = 1,

    $$ w_{r + 1,r + 1} (1;\,\alpha_{r + 1} ) = \delta_{r,r} \int_{0}^{1} {w_{r,r} {(}x;\alpha_{r + 1} {\text{)d}}x} = \left[ {\int_{0}^{1} {w_{r,r} {(}x;\alpha_{r + 1} {\text{)d}}x} } \right]^{ - 1} \int_{0}^{1} {w_{r,r} {(}x;\alpha_{r + 1} {\text{)d}}x} = 1\;, $$
    $$ \begin{gathered} w_{0,r + 1}^{{({0})}} (1;\,\alpha_{1} ) = w_{0,r + 1} (1;\,\alpha_{1} ) = 1 - \int_{0}^{{1}} {\delta_{0,r} w_{0,r} {(}x;\alpha_{1} {\text{)d}}x} \\ = {1} - \frac{{\int_{0}^{{1}} {w_{0,r} {(}x;\alpha_{1} {\text{)d}}x} }}{{\delta_{0,r} }} = {1} - \frac{{\int_{0}^{{1}} {w_{0,r} {(}x;\alpha_{1} {\text{)d}}x} }}{{\int_{0}^{{1}} {w_{0,r} {(}t;\alpha_{1} {\text{)d}}t} }} = 1 - 1 = 0, \\ \end{gathered} $$
    $$ w_{i,r + 1}^{(0)} (1;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = w_{i,r + 1} (1;\,\alpha_{i} ,\alpha_{{i + {1}}} ) = 0,\,\;i = 1,2, \ldots ,r, $$
    $$ w_{0,r + 1}^{(k)} (1;\,\alpha_{1} ) = \left. {\frac{{{\text{d}}^{k} }}{{{\text{d}}{\kern 1pt} t^{k} }}\left[ {1 - \int_{0}^{t} {\delta_{0,r} w_{0,r} {(}x;\alpha_{1} {\text{)d}}x} } \right]} \right|_{t = 1} = - \delta_{0,r} w_{0,r}^{(k - 1)} {(}0;\alpha_{1} {)} = 0,\,\;k = {1},{2}, \ldots ,r, $$
    $$ \begin{gathered} w_{1,r + 1}^{(k)} (1;\,\alpha_{1} ,\alpha_{2} ) = \left. {\frac{{{\text{d}}^{k} }}{{{\text{d}}{\kern 1pt} t^{k} }}\left[ {\int_{0}^{t} {\left[ {\delta_{0,r} w_{0,r} (x;\alpha_{1} ) - \delta_{1,r} \tilde{w}_{1,r} (x;\alpha_{2} )} \right]{\text{d}}x} } \right]} \right|_{t = 1} \\ = \left. {\left[ {\delta_{0,r} w_{0,r}^{(k - 1)} (t;\alpha_{1} ) - \delta_{1,r} \tilde{w}_{1,r}^{(k - 1)} (t;\alpha_{2} )} \right]} \right|_{t = 1} \\ = \delta_{0,r} w_{0,r}^{(k - 1)} (1;\alpha_{1} ) - \delta_{1,r} w_{1,r}^{(k - 1)} (1;\alpha_{2} ,\alpha_{2} ) \\ = 0,\,\;k = 1,2, \ldots ,r - 1{,} \\ \end{gathered} $$
    $$ \begin{gathered} w_{i,r + 1}^{(k)} (1;\,\alpha_{i} ,\alpha_{i + 1} ) = \left. {\frac{{{\text{d}}^{k} }}{{{\text{d}}{\kern 1pt} t^{k} }}\left[ {\int_{0}^{t} {\left[ {\delta_{i - 1,r} \tilde{w}_{i - 1,r} (x;\alpha_{i} ) - \delta_{i,r} \tilde{w}_{i,r} (x;\alpha_{i + 1} )} \right]{\text{d}}x} } \right]} \right|_{t = 1} \\ = \left. {\left[ {\delta_{i - 1,r} \tilde{w}_{i - 1,r}^{(k - 1)} (t;\alpha_{i} ) - \delta_{i,r} \tilde{w}_{i,r}^{(k - 1)} (t;\alpha_{i + 1} )} \right]} \right|_{t = 1} \\ = \delta_{i - 1,r} w_{i - 1,r}^{(k - 1)} (1;\alpha_{i} ,\alpha_{i} ) - \delta_{i,r} w_{i,r}^{(k - 1)} (1;\alpha_{i + 1} ,\alpha_{i + 1} ) \\ = 0,\,\;k = {1},{2}, \ldots ,r - i,\,\;i = {2},{3}, \ldots ,r - 1; \\ \end{gathered} $$
  3. c.

    for t = 0 and \(i = j\),

    $$ \begin{gathered} w_{{{1},r + 1}}^{{({1})}} (0;\,\alpha_{{1}} ,\alpha_{{2}} ) = \left. {\frac{{{\text{d}}^{1} }}{{{\text{d}}t^{1} }}\left[ {\int_{0}^{t} {\left[ {\delta_{0,r} w_{0,r} (x;\alpha_{1} ) - \delta_{1,r} \tilde{w}_{1,r} (x;\alpha_{2} )} \right]{\text{d}}x} } \right]} \right|_{t = 0} \\ = \delta_{0,r} w_{0,r} (0;\alpha_{1} ) - \delta_{1,r} w_{1,r} (0;\alpha_{2} ,\alpha_{2} ) = \delta_{0,r} \times 1 - \delta_{1,r} \times 0 = \delta_{0,r} , \\ \end{gathered} $$
    $$ \begin{gathered} w_{i,r + 1}^{(i)} (0;\,\alpha_{i} ,\alpha_{i + 1} ) = \left. {\frac{{{\text{d}}^{i} }}{{{\text{d}}t^{i} }}\left[ {\int_{0}^{t} {\left[ {\delta_{i - 1,r} \tilde{w}_{i - 1,r} (x;\alpha_{i} ) - \delta_{i,r} \tilde{w}_{i,r} (x;\alpha_{i + 1} )} \right]{\text{d}}x} } \right]} \right|_{t = 0} \\ = \left. {\left[ {\delta_{i - 1,r} \tilde{w}_{i - 1,r}^{(i - 1)} (t;\alpha_{i} ) - \delta_{i,r} \tilde{w}_{i,r}^{(i - 1)} (t;\alpha_{i + 1} )} \right]} \right|_{t = 0} \\ = \delta_{i - 1,r} w_{i - 1,r}^{(i - 1)} (0;\alpha_{i} ,\alpha_{i} ) - \delta_{i,r} w_{i,r}^{(i - 1)} (0;\alpha_{i + 1} ,\alpha_{i + 1} ) \\ = \delta_{i - 1,r} \times \left[ {\delta_{{(i - {1}) - 1,r - 1}} \delta_{(i - 1) - 2,r - 2} \ldots \delta_{0,r - (i - 1)} } \right] - \delta_{i,r} \times {0} \\ = \delta_{i - 1,(r + 1) - 1} \delta_{i - 2,(r + 1) - 2} \ldots \delta_{0,(r + 1) - i} ,\,\;i = {2},{3}, \ldots ,r - 1, \\ \end{gathered} $$
    $$ \begin{gathered} w_{r,r + 1}^{(r)} (0;\,\alpha_{r} ,\alpha_{r + 1} ) = \left. {\frac{{{\text{d}}^{r} }}{{{\text{d}}t^{r} }}\left[ {\int_{0}^{t} {\left[ {\delta_{r - 1,r} \tilde{w}_{r - 1,r} (x;\alpha_{r} ) - \delta_{r,r} w_{r,r} (x;\alpha_{r + 1} )} \right]{\text{d}}x} } \right]} \right|_{t = 0} \\ = \left. {\left[ {\delta_{r - 1,r} \tilde{w}_{r - 1,r}^{(r - 1)} (t;\alpha_{r} ) - \delta_{r,r} w_{r,r}^{(r - 1)} (t;\alpha_{r + 1} )} \right]} \right|_{t = 0} \\ = \delta_{r - 1,r} w_{r - 1,r}^{(r - 1)} (0;\alpha_{r} ,\alpha_{r} ) - \delta_{r,r} w_{r,r}^{(r - 1)} (0;\alpha_{r + 1} ) \\ = \delta_{r - 1,r} \times \left[ {\delta_{{(r - {1}) - 1,r - 1}} \delta_{(r - 1) - 2,r - 2} \ldots \delta_{0,r - (r - 1)} } \right] - \delta_{r,r} \times 0 \\ = \delta_{r - 1,(r + 1) - 1} \delta_{r - 2,(r + 1) - 2} \cdots \delta_{0,(r + 1) - r} ; \\ \end{gathered} $$
  4. d.

    for \(i = j = r + 1\),

    $$ \begin{gathered} w_{r + 1,r + 1}^{(r + 1)} (0;\,\alpha_{r + 1} ) = \left. {\frac{{{\text{d}}^{r} }}{{{\text{d}}{\kern 1pt} t^{r} }}\left[ {\delta_{r,r} w_{r,r} (t;\,\alpha_{r + 1} )} \right]} \right|_{t = 0} = \delta_{r,r} w_{r,r}^{(r)} (0;\,\alpha_{r + 1} ) \\ = \delta_{r,r} \left[ {\delta_{r - 1,r - 1} \delta_{r - 2,r - 2} \cdots \delta_{{{1},{1}}} \delta (\alpha_{r + 1} )} \right] \\ = \delta_{r,r} \delta_{r - 1,r - 1} \cdots \delta_{{{1},{1}}} \delta (\alpha_{r + 1} ),\;\,\delta (\alpha_{r + 1} ) = \alpha_{r + 1} {/}\sin \alpha_{r + 1} . \\ \end{gathered} $$

These indicate that the terminal properties listed in (9) also hold for n = r + 1. This ends the proof.

1.2 The proof of linear independence for generalized C-Bézier basis functions

Proof

To check the linear independence of \(\{ w_{{{0},n}} (t)\;,\;w_{{{1},n}} (t), \ldots ,w_{n,n} (t)\}\), we consider a linear combination as follows:

$$ l_{{0}} w_{{{0},n}} (t;\,\alpha_{1} ) + \sum\limits_{i = 1}^{n - 1} {l_{i} w_{i,n} (t;\,\alpha_{i} ,\alpha_{{i + {1}}} )} + l_{n} w_{n,n} (t;\,\alpha_{n} ) = 0. $$
(56)

By taking the k-order derivative of Eq. (56) about t on both sides, we get

$$ l_{{0}} w_{{{0},n}}^{(k)} (t;\,\alpha_{1} ) + \sum\limits_{i = 1}^{n - 1} {l_{i} w_{i,n}^{(k)} (t;\,\alpha_{i} ,\alpha_{{i + {1}}} )} + l_{n} w_{n,n}^{(k)} (t;\,\alpha_{n} ) = 0,\quad k = {0},{1}, \ldots ,n. $$
(57)

For t = 0, according to (57) and combining with (9), we can obtain the following system of linear equations with respect to \(l_{i} ,\,\;i = 0,1, \ldots ,n\)

$$ \left\{ {\begin{array}{*{20}l} {l_{0} w_{0,n}^{(0)} (0;\,\alpha_{1} ) = 0,} \hfill \\ {l_{0} w_{0,n}^{(1)} (0\,;\,\alpha_{1} ) + l_{1} w_{1,n}^{(1)} (0;\,\alpha_{1} ,\alpha_{2} ) = 0,} \hfill \\ {l_{0} w_{0,n}^{(2)} (0\,;\,\alpha_{1} ) + l_{1} w_{1,n}^{(2)} (0;\,\alpha_{1} ,\alpha_{2} ) + l_{2} w_{2,n}^{(2)} (0;\,\alpha_{2} ,\alpha_{3} ) = 0,} \hfill \\ \cdots \hfill \\ {l_{0} w_{0,n}^{(n)} (0;\,\alpha_{1} ) + l_{1} w_{1,n}^{(n)} (0;\,\alpha_{1} ,\alpha_{2} ) + \cdots + l_{n} w_{n - 1,n}^{(n)} (0;\,\alpha_{n - 1} ,\alpha_{n} ) + l_{n} w_{n,n}^{(n)} (0;\,\alpha_{n} ) = 0,} \hfill \\ \end{array} } \right. $$
(58)

where \(w_{0,n}^{(0)} (0;\,\alpha_{1} ) = w_{0,n} (0;\,\alpha_{1} ) = {1}\), \(w_{i,n}^{(i)} (0;\,\alpha_{i} ,\alpha_{i + 1} ) \ne 0,\,\;i = 1,2, \ldots ,n - 1\) and \(w_{n,n}^{(n)} (0;\,\alpha_{n} ) \ne 0\).

Thus, it is obvious that \(l_{i} = 0,\;i = 0,1, \ldots ,n\), meaning that \(w_{i,n} (t),\,\;i = 0,1, \ldots ,n\) are linearly independent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Cao, H., Wu, J. et al. Construction of developable surfaces using generalized C-Bézier bases with shape parameters. Comp. Appl. Math. 39, 157 (2020). https://doi.org/10.1007/s40314-020-01185-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01185-9

Keywords

Mathematics Subject Classification

Navigation