Skip to main content

Advertisement

Log in

Treatments of a phthalocyanine-based green ink for tattoo removal purposes: generation of toxic fragments and potentially harmful morphologies

  • Analytical Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Since tattoos became overwhelmingly fashionable worldwide, the demand for removal has proportionally increased, Nd:YAG Q-switch laser being the most commonly used tool for the purpose. In this framework we investigated the composition and products of laser treatment of green tattoo ink, the Green Concentrate from Eternal. The ink characterization has been carried out by IR, UV–Vis, EDX spectroscopies, and SEM imaging. It revealed the presence of the pigment PG7, rather than PG36 as reported on the bottle label, along with non-fully halogenated analogues. The morphology is an extended sheath with embedded grains. Subsequent laser treatments were performed on both dried and extracted inks, dispersed either in water or in propan-2-ol, chosen for their different polarities, as it is the case in the skin layers. The products were analyzed by gas chromatography-mass spectrometry, UV–Vis spectroscopy, SEM imaging, and dynamic light scattering. The outcome is a complex fragmentation pattern that depends both on the solvent and on the initial aggregation state. The fragment compounds are toxic at various degrees according to the Classification Labelling and Packaging regulations. Several shapes of aggregates are produced as an effect of both downsizing and re-aggregation, with potentially harmful aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achar BN, Mohan Kumar TM, Lokesh KS (2007) Synthesis, characterization, pyrolysis kinetics and conductivity studies of chloro substituted cobalt phthalocyanines. J Coord Chem 60:1833–1846

    CAS  Google Scholar 

  • Anderson R, Parrish J (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527

    CAS  PubMed  Google Scholar 

  • Ara G, Anderson R, Mandel K, Ottesen M, Oseroff AR (1990) Irradiation of pigmented melanoma cells with high intensity pulsed radiation generates acoustic waves and kills cells. Lasers Surg Med 10:52–59

    CAS  PubMed  Google Scholar 

  • Barret PA, Bradrook EF, Dent CE, Linstead RP (1939) Phthalocyanines and related compounds. Part XVI. The halogenation of phthalocyanines. J Chem Soc 1820–1828

  • Barszcz B, Bogucki A, Biadasz A, Bursa B, Wróbel D, Graja A (2011) Molecular orientation and spectral investigations of Langmuir–Blodgett films of selected copper phthalocyanines. J Photochem Photobiol A 218:48–57

    CAS  Google Scholar 

  • Bauer EM, De Caro T, Tagliatesta P, Carbone M, (2019) Unraveling the real pigment composition of tattoo inks: the case of bi-components phthalocyanine based greens. Dyes Pigm 167:225–235

    CAS  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation, North Chelmsford

    Google Scholar 

  • Bernstein EF (2017) Laser tattoo removal. Semin Plast Surg 21:175–192

    Google Scholar 

  • Bocca B, Sabbioni E, Miceti I, Alimonti A, Petruccia F (2017) Size and metal composition characterization of nano- and microparticles in tattoo inks by a combination of analytical techniques. J Anal Atom Spectrom 3:2616–2628

    Google Scholar 

  • Boulanger G, Andujar P, Pairon J-C, Billon-Galland M-A, Dion C, Dumortier P, Brochard P, Sobaszek A, Bartsch P, Paris C, Jaurand M-C (2014) Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health 13:59

    PubMed  PubMed Central  Google Scholar 

  • Bucella M, Dorigato A, Rizzola F, Caldara M, Fambri L (2018) Influence of the processing parameters on the dispersion and coloration behavior of a halogenated copper phthalocyanine-based masterbatch. Adv Polym Tech 37:21721

    Google Scholar 

  • CHEM SPACE. https://chem-space.com/

  • Classification, labelling and packaging regulation (CLP) at ECHA https://web.archive.org/web/20090309042730/http://echa.europa.eu/classification/clp_regulation_en.asp

  • Code of Federal Regulations (2015) Office of the Federal Register; Title 21, Section 703 (f) and 705(b) US Government Printing Office: Washington, DC, 2015

  • Compiled RAC and SEAC Opinion on an Annex XV dossier proposing restrictions on substances used in tattoo inks and permanent make-up ECHA/RAC/RES-O-0000001412-86-240/F, ECHA/SEAC/ECHA/SEAC/RES-O-0000001412-86-265/F, https://echa.europa.eu/it/registry-of-restriction-intentions/-/dislist/details/0b0236e180dff62a. Accessed April 24th 2020

  • ECHA substance Infocard. https://echa.europa.eu/substance-information/-/substanceinfo/100.014.125

  • Everts S (2016) Chemical and Engineering News, American Chemical Society, August 22nd, 2016 FDA cosmetic facts: tattoos and permanent makeup

  • Gaudron S, Ferrier-Le Bouëdec MC, Franck F, D’Incan M (2014) Azopigments and quinacridones induce delayed hypersensitivity in red tattoos. Contact Dermatitis 72:97–105

    PubMed  Google Scholar 

  • Germinario G, van der Werf ID, Sabbatini L (2015) Pyrolysis gas chromatography mass spectrometry of two green phthalocyanine pigments and their identification in paint systems. J Anal Appl Pyrolysis 115:175–183

    CAS  Google Scholar 

  • Giumanini AG, Verardo G, Strazzolini P (1989) The photolysis of 2,4,5,6-tetrachloro-1,3-dicyanobenzene. J Photochem Photobiol A 48:129–153

    CAS  Google Scholar 

  • Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151:203–210

    CAS  PubMed  Google Scholar 

  • Hauri U (2014) Inks for tattoos and permanent make-up—pigments, preservatives, aromatic amines, polyaromatic hydrocarbons and nitrosamines Swiss National Investigation Campaign 2014 Department of Health, Kanton Basel-Stadt http://www.kantonslaborbsch/dms/kantonslabor/download/berichte/berichte-2014/Tattoo_PMU_2014_EN-UK-/Tattoo_PMU_2014_EN%28UK%29pdf

  • Hauri U, Hohl C (2015) Photostability and breakdown products of pigments currently used in tattoo inks. Curr Probl Dermatol 48:164–169

    PubMed  Google Scholar 

  • Herbst W, Hunger K (2004) Industrial organic pigments, 3rd edn. WILEY-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  • Hering H, Sung AY, Röder N, Hutzler Ch, Berlien HP, Laux P, Luch A, Schreiver I (2018) Laser irradiation of organic tattoo pigments releases carcinogens with 3,3′-dichlorobenzidine inducing DNA strand breaks in human skin cells. J Invest Dermatol 13:2687–2690

    Google Scholar 

  • Ho SG, Goh CL (2015) Laser tattoo removal: a clinical update. J Cutan Aesthet Surg 8:9–15

    PubMed  PubMed Central  Google Scholar 

  • Høgsberg T, Loeschner K, Löf D, Serup J (2011) Tattoo inks in general usage contain nanoparticles. Br J Dermatol 165:1210–1218

    PubMed  Google Scholar 

  • Kaur RR, Kirby W, Maibach H (2009) Cutaneous allergic reactions to tattoo ink. J Cosmet Dermatol 8:295–300

    PubMed  Google Scholar 

  • Kihara R, Imada S, Kawai T, Asahi T (2019) Fabrication of nanorods colloids of copper hexadecafluorophthalocyanine by nanosecond-pulse laser fragmentation in organic solvents. Appl Surf Sci 478:532–538

    CAS  Google Scholar 

  • Klitzman B (2013) Development of permanent but removable tattoos German Federal Institute for Risk Assessment (BfR) conference on tattoo safety; Berlin, Germany; June 6–7, 2013 http://www.bfr.bund.de/cm/343/development-of-permanent-but-removable-tattoos.pdf. Accessed Apr 10 2019.

  • Kluger N, Koljonen V (2012) Tattoos, inks, and cancer. Lancet Oncol 13:e161–e168

    PubMed  Google Scholar 

  • Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57:4814–4820

    CAS  Google Scholar 

  • LaBrosse JL, Anderegg RJ (1984) The mass spectrometer as a chlorine-selective chromatographic detector. J Chromatogr A 3:1483–1492

    Google Scholar 

  • Laumann A, Derick A (2006) Tattoos and body piercings in the United States: a national data set. J Am Acad Dermatol 55:413–421

    PubMed  Google Scholar 

  • Laux P, Tralau T, Tentschert J, Blume A, Al Dahouk S, Bäumler W, Bernstein E, Bocca B, Alimonti A, Coleman H, de Cuyper C, Coleb H, Dähne L, Hauri U, Howard PC, Janssen P, Katz L, Klitzman B, Kluger N, Krutak L, Platzek T, Scott-Lang V, Serup J, Teubner W, Schriver I, Wilkniß E, Luch A (2016) A medical-toxicological view of tattooing. Lancet 387:395–402

    PubMed  Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lu F, Wang C, Zhao R, Du L, Fang Z, Guo X, Zhao Z (2018) Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors 8:31

    PubMed Central  Google Scholar 

  • Ma Y, Guo Y, Wu S, Lv Z, Zhang Q, Ke Y (2017) Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells. RCS Adv 7:23560–23572

    CAS  Google Scholar 

  • Meng F, Liu X (2014) Growing nano-petals on electrospun micro/nano fibers. RCS Adv 4:8699–8702

    CAS  Google Scholar 

  • Mohanta D, Patnaik S, Sood S, Das N (2019) Carbon nanotubes: evaluation of toxicity at biointerfaces. J Pharm Anal 9:293–300

    PubMed  PubMed Central  Google Scholar 

  • Muroyama A, Lechler T (2012) Polarity and stratification of the epidermis. Semin Cell Dev Biol 23:890–896

    PubMed  PubMed Central  Google Scholar 

  • Murphy MJ (2018) High speed ink aggregates are ejected from tattoos during Q-switched Nd:YAG laser treatments. Lasers Surg Med 50:711–717

    Google Scholar 

  • Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5:511–520

    CAS  PubMed  Google Scholar 

  • Pothiawala S, Kilmer SL, Ibrahimi OA (2014) Laser tattoo removal. In: Keyvan N (ed) Handbook of lasers in dermatology. Springer, Berlin

    Google Scholar 

  • Regulations in single European countries: France—Arrêté du 6 mars 2013 fixant la liste des substances qui ne peuvent pas entrer dans la composition des produits de tatouage, https://www.legifrance.gouv.fr/eli/arrete/2013/3/6/AFSP1306308A/jo/texte

  • Regulations in single European countries: Spain—Informaciόn sobre productos para maquillaje permanente (micropigmentaciόn) y tatuaje. https://www.aemps.gob.es/informa/notasInformativas/cosmeticosHigiene/2008/NI-prodAutorizados-tatuaje_julio-2008.htm

  • Regulations in single European countries: Sweden—Förordning (2012:503) om tatueringsfärger. https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/forordning-2012503-omtatueringsfarger_sfs-2012-503

  • Regulations in single European countries: The Netherlands—Besluit van 24 April 2013, houdende wijziging van he Warenwetbesluit tatoeagekleurstoffen in verband met het intrekken van Richtlijn 76/768/EEG. https://zoek.officielebekendmakingen.nl/stb-2013-177.html

  • ResAP (2003) 2 Resolution on tattoos and permanent make-up. https://search.coe.int/cm/Pages/result_details.aspx?ObjectID=09000016805df8e5. Accessed Apr 24 2020

  • ResAP (2008) 1 Council of Europe Resolution on requirements and criteria for the safety of tattoos and permanent make-up Feb 20th 2008. https://search.coe.int/cm/Pages/result_details.aspx?ObjectID=09000016805d3dc4. Accessed Apr 24 2020

  • Safety Assessment WHO 2002 World Health Organization (WHO) (2002) Folium et Cortex Hamamelidis in “WHO monographs on selected medicinal plants”, Geneva: 2:124–136. https://apps.who.int/iris/bitstream/handle/10665/42052/9241545372.pdf?sequence=2&isAllowed=y

  • Safety Assessment (2017) of Hamamelis virginiana (Witch Hazel)-derived ingredients as used in cosmetics. https://www.cir-safety.org/sites/default/files/Witch%20Hazel.pdf

  • Schreiver I, Hutzler C, Laux P, Berlien H-P, Luch A (2015) Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue. Sci Rep 5:12915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiver I, Hutzler C, Andree S, Laux P, Luch A (2016) Identification and hazard prediction of tattoo pigments by means of pyrolysis-gas chromatography/mass spectrometry. Arch Toxicol 90:1639–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder K, Pohlenz-Michel C, Simetska N, Voss J-U, Escher S, Mangelsdorf I (2014) Carcinogenicity and Mutagenicity of Nanoparticles—Assessment of Current Knowledge as Basis for Regulation Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, On behalf of the Federal Environment Agency (Germany) 50/2014. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_50_2014_carcinogenicity_and_mutagenicity_of_nanoparticles_1.pdf

  • Statistics. https://www.advdermatology.com/blog/statistics-surrounding-tattoo-regret

  • Steinbach F, Schmidt HH (1975) Metal phthalocyanines used as catalysts in gas phase reactions IV. Oxidation of 2-propanol catalyzed by monomeric beta-Cu-phthalocyanne in the presence of sulfur compounds. J Catal 39:190–197

    CAS  Google Scholar 

  • Swiss Regulation (2005) Das Eidgenössische Departement des Innern (EDI) Verordnung über Gegenstände für den Schleimhaut-, Haut- und Haarkontakt sowie über Kerzen, Streichhölzer, Feuerzeuge und Scherzartikel (Verordnung über Gegenstände für den Humankontakt) Bern: Swiss Government, 2005: 1–26, https://www.admin.ch/opc/de/classified-compilation/20050181/index.html. Accessed April 24th 2020

  • TätoV (2008)—Tätowiermittel-Verordnung Nov 13, 2008, BGBl I S 2215, last amended January 26th, 2016, BGBl I S 108. https://www.gesetze-im-internet.de/t_tov/BJNR221500008.html. Accessed Apr 24 2020

  • Taylor C, Anderson R, Gange R, Michaud N, Flotte TJ (1991) Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser. J Invest Dermatol 97:131–136

    CAS  PubMed  Google Scholar 

  • Trouiller B, Reliene R, Westbrook Solaimani AP, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    CAS  PubMed  Google Scholar 

  • TSCA Inventory March (2020) https://www.epagov/tsca-inventory

  • Varga Z, Nicol E, Bouchonnet S (2020) Photodegradation of benziosothiazolinone: identification and biological activity of degradation products. Chemosphere 240:124862

    CAS  PubMed  Google Scholar 

  • Vasold R, Naarmann N, Ulrich H, Fischer D, Konig B, Landthale M, Bäumler W (2004) Tattoo pigments are cleaved by laser light-the chemical analysis in vitro provide evidence for hazardous compounds. Photochem Photobiol 80:185–190

    CAS  PubMed  Google Scholar 

  • Venugopala Reddy KR, Keshavayya J (2002) Synthesis of symmetrically substituted octabromophthalocyanine pigments and their characterization. Dyes Pigm 53:187–194

    CAS  Google Scholar 

  • Vicum L, Mazzotti M, Iggland M (2019) Precipitation and crystallization of pigments. In: Myerson AS, Lee AY (eds) Handbook of industrial crystallization. Cambridge University Press, Deniz Erdemir

    Google Scholar 

  • Wang H, Mauthoor S, Din S, Gardener JA, Chang R, Warner M, Aeppli G, McComb DW, Ryan MP, Wu W, Fisher AJ, Stoneham M, Heutz S (2010) Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption. ACS Nano 4:3921–3926

    CAS  PubMed  Google Scholar 

  • Wang Z, Yang W, Wei J, Meng F, Liu X (2014) Preparation and microwave absorption properties of rod-like iron phthalocyanine with nitrile and nitro groups. Mater Lett 123:6–9

    CAS  Google Scholar 

  • Wenig P, Odermatt J (2010) OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinform 11:405. http://www.openchrom.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Carbone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, E.M., Scibetta, E.V., Cecchetti, D. et al. Treatments of a phthalocyanine-based green ink for tattoo removal purposes: generation of toxic fragments and potentially harmful morphologies. Arch Toxicol 94, 2359–2375 (2020). https://doi.org/10.1007/s00204-020-02790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02790-7

Keywords

Navigation