Skip to main content

Advertisement

Log in

Climate-Sensitivity Comparisons for Whole Wood, Holocellulose, and α-Cellulose Carbon Isotope Series in Masson Pine

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A large number of studies have analyzed the annual growth rings and environmental drivers in subtropical China. However, how environmental and physiological effects define the isotopic composition of the wood in this region is poorly understood. Here, we explored the potential of applying three components (whole wood, holocellulose, and α-cellulose) of stable carbon isotopes from Masson pine (Pinus massoniana Lamb.) to dendroclimatology. Sampling sites were covered at the northern, eastern, southern, and western margins of the Masson pine distribution in subtropical China. The results showed that the mean δ13C of holocellulose and α-cellulose both had more enriched values than whole wood, with differences of 1.261 ± 0.233‰ and 1.311 ± 0.189‰, respectively, within individual trees. The three components displayed uniform year-to-year variations and common significant climatic signals, indicating that the δ13C of whole wood from Masson pine was enough to reconstruct interannual paleoclimate information without cellulose isolation due to its high climate sensitivity and low time requirements. The mean δ13C record was significantly and negatively correlated with autumn hydroclimatic parameters (e.g., relative humidity and precipitation) in each study area. This study provides evidence of the influence of hydroclimatic variation on Masson pine forests at a large spatial scale and further enhances the interpretation of climate variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babst, F.; Bodesheim, P.; Charney, N.; Friend, A.D.; Girardin, M.P.; Klesse, S.; Moore, D.J.P.; Seftigen, K.; Björklund, J.; Bouriaud, O.; Dawson, A.; DeRose, R.J.; Dietze, M.C.; Eckes, A.H.; Enquist, B.; Frank, D.C.; Mahecha, M.D.; Poulter, B.; Record, S.; Trouet, V.; Turton, R.H.; Zhang, Z.; Evans, M.E.K.: When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018). https://doi.org/10.1016/j.quascirev.2018.07.009

    Article  Google Scholar 

  2. Cook, E.; Kairiūkštis, L. (eds.): Methods of Dendrochronology: Applications in the Environmental Science. Kluwer Academic Publishers, International Institute for Applied Systems Analysis, Dordrecht, Boston (1990)

    Google Scholar 

  3. Pearson, S.: Tree-ring dating: a review. Vernac. Archit. 28, 25–39 (2013). https://doi.org/10.1179/030554797786050572

    Article  Google Scholar 

  4. Shi, J.; Li, J.; Zhang, D.D.; Zheng, J.; Shi, S.; Ge, Q.; Lee, H.F.; Zhao, Y.; Zhang, J.; Lu, H.: Two centuries of April–July temperature change in southeastern China and its influence on grain productivity. Sci. Bull. 62, 40–45 (2017). https://doi.org/10.1016/j.scib.2016.11.005

    Article  Google Scholar 

  5. Wilson, R.J.S.; Luckman, B.H.; Esper, J.: A 500 year dendroclimatic reconstruction of spring–summer precipitation from the lower Bavarian Forest region, Germany. Int. J. Climatol. 25, 611–630 (2005). https://doi.org/10.1002/joc.1150

    Article  Google Scholar 

  6. Gagen, M.; McCarroll, D.; Edouard, J.-L.: Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the southern French Alps. Clim. Change 78, 363–379 (2006). https://doi.org/10.1007/s10584-006-9097-3

    Article  Google Scholar 

  7. Lavergne, A.; Daux, V.; Villalba, R.; Barichivich, J.: Temporal changes in climatic limitation of tree-growth at upper treeline forests: contrasted responses along the west-to-east humidity gradient in Northern Patagonia. Dendrochronologia 36, 49–59 (2015). https://doi.org/10.1016/j.dendro.2015.09.001

    Article  Google Scholar 

  8. Loader, N.J.; McCarroll, D.; Gagen, M.; Robertson, I.; Jalkanen, R.: Extracting climatic information from stable isotopes in tree rings. In: Siegw, R.T.W. (ed.) Terrestrial Ecology, pp. 25–48. Elsevier, Amsterdam (2007)

    Google Scholar 

  9. Fichtler, E.; Helle, G.; Worbes, M.: Stable-carbon isotope time series from tropical tree rings indicate a precipitation signal. Tree Ring Res. 66, 35–49 (2010). https://doi.org/10.3959/2008-20.1

    Article  Google Scholar 

  10. Konter, O.; Holzkämper, S.; Helle, G.; Büntgen, U.; Saurer, M.; Esper, J.: Climate sensitivity and parameter coherency in annually resolved δ13C and δ18O from Pinus uncinata tree-ring data in the Spanish Pyrenees. Chem. Geol. 377, 12–19 (2014). https://doi.org/10.1016/j.chemgeo.2014.03.021

    Article  Google Scholar 

  11. Liu, X.; An, W.; Treydte, K.; Shao, X.; Leavitt, S.; Hou, S.; Chen, T.; Sun, W.; Qin, D.: Tree-ring δ18O in southwestern China linked to variations in regional cloud cover and tropical sea surface temperature. Chem. Geol. 291, 104–115 (2012). https://doi.org/10.1016/j.chemgeo.2011.10.001

    Article  Google Scholar 

  12. Soudant, A.; Loader, N.J.; Bäck, J.; Levula, J.; Kljun, N.: Intra-annual variability of wood formation and δ13C in tree-rings at Hyytiälä, Finland. Agric. For. Meteorol. 224, 17–29 (2016). https://doi.org/10.1016/j.agrformet.2016.04.015

    Article  Google Scholar 

  13. Gagen, M.; McCarroll, D.; Loader, N.J.; Robertson, I.: Stable isotopes in dendroclimatology: moving beyond ‘potential’. In: Hughes, M.K., Swetnam, T.W., Diaz, H.F. (eds.) Dendroclimatology, pp. 147–172. Springer Netherlands, Dordrecht (2011)

    Google Scholar 

  14. Zhao, X.; Zheng, Z.; Shang, Z.; Wang, J.; Cheng, R.; Qian, J.: Climatic information recorded in stable carbon isotopes in tree rings of Cryptomeria fortunei, Tianmu Mountain, China. Dendrochronologia 32, 256–265 (2014). https://doi.org/10.1016/j.dendro.2014.06.002

    Article  Google Scholar 

  15. McCarroll, D.; Pawellek, F.: Stable carbon isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: variability and signal-strength. Holocene 8, 675–684 (1998). https://doi.org/10.1191/095968398675987498

    Article  Google Scholar 

  16. Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T.: Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989). https://doi.org/10.1146/annurev.pp.40.060189.002443

    Article  Google Scholar 

  17. Flower, C.E.; Knight, K.S.; Rebbeck, J.; Gonzalez-Meler, M.A.: The relationship between the emerald ash borer (Agrilus planipennis) and ash (Fraxinus spp.) tree decline: using visual canopy condition assessments and leaf isotope measurements to assess pest damage. For. Ecol. Manag. 303, 143–147 (2013). https://doi.org/10.1016/j.foreco.2013.04.017

    Article  Google Scholar 

  18. Duan, J.; Zhang, Q.; Lv, L.-X.: Increased variability in cold-season temperature since the 1930s in subtropical China. J. Clim. 26, 4749–4757 (2013). https://doi.org/10.1175/JCLI-D-12-00332.1

    Article  Google Scholar 

  19. Wang, Y.; Xu, Y.; Lei, C.; Li, G.; Han, L.; Song, S.; Yang, L.; Deng, X.: Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960–2012. Atmos. Res. 172–173, 196–205 (2016). https://doi.org/10.1016/j.atmosres.2016.01.008

    Article  Google Scholar 

  20. Cai, Q.; Liu, Y.; Duan, B.; Li, Q.; Sun, C.; Wang, L.: Tree-ring δ18O, a tool to crack the paleo-hydroclimatic code in subtropical China. Quat. Int. 487, 3–11 (2018). https://doi.org/10.1016/j.quaint.2017.10.038

    Article  Google Scholar 

  21. Cai, Q.; Liu, Y.: Two centuries temperature variations over subtropical southeast China inferred from Pinus taiwanensis Hayata tree-ring width. Clim. Dyn. 48, 1813–1825 (2017). https://doi.org/10.1007/s00382-016-3174-8

    Article  Google Scholar 

  22. Zhao, X.; Li, B.; Wang, J.; Shang, Z.: Analyzing the azimuth distribution of tree ring δ (13)C in subtropical regions of eastern China using the harmonic analysis. Acta Ecol. Sin. 32, 6647–6660 (2012)

    Google Scholar 

  23. Kuang, Y.W.; Sun, F.F.; Wen, D.Z.; Zhou, G.Y.; Zhao, P.: Tree-ring growth patterns of Masson pine (Pinus massoniana L.) during the recent decades in the acidification Pearl River Delta of China. For. Ecol. Manag. 255, 3534–3540 (2008). https://doi.org/10.1016/j.foreco.2008.02.036

    Article  Google Scholar 

  24. Chen, F.; Yuan, Y.; Wei, W.; Yu, S.; Zhang, T.: Reconstructed temperature for Yong’an, Fujian, Southeast China: linkages to the Pacific Ocean climate variability. Glob. Planet. Change 86–87, 11–19 (2012). https://doi.org/10.1016/j.gloplacha.2012.01.005

    Article  Google Scholar 

  25. Shi, J.; Lu, H.; Li, J.; Shi, S.; Wu, S.; Hou, X.; Li, L.: Tree-ring based February–April precipitation reconstruction for the lower reaches of the Yangtze River, southeastern China. Glob. Planet. Change 131, 82–88 (2015). https://doi.org/10.1016/j.gloplacha.2015.05.006

    Article  Google Scholar 

  26. Lan, T.; Xia, B.; He, S.: Tree ring analysis on relation of Pinus massoniana growth to climate factors. Chin. J. Appl. Ecol. 5, 422–424 (1994)

    Google Scholar 

  27. Xia, B.; Lan, T.; He, S.: Nonelinear response function of growth of Pinus massoniana to climate. Chin. J. Acta Phytoecol. Sin. 20, 51–56 (1996)

    Google Scholar 

  28. Leavitt, S.W.; Long, A.: Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 311, 145–147 (1984). https://doi.org/10.1038/311145a0

    Article  Google Scholar 

  29. Ma, L.M.; Liu, Y.; Zhao, J.C.; An, Z.S.: Response of stable-carbon isotope composition of different tree-ring compounds to climatic change. Acta Ecol. Sin. 23, 2607–2613 (2003). https://doi.org/10.3321/j.issn:1000-0933.2003.12.015

    Article  Google Scholar 

  30. Craig, H.: Carbon-13 variations in Sequoia rings and the atmosphere. Science 119, 141–143 (1954). https://doi.org/10.1126/science.119.3083.141

    Article  Google Scholar 

  31. Libby, L.M.; Pandolfi, L.J.; Payton, P.H.; Marshall, J.; Becker, B.; Giertz-Sienbenlist, V.: Isotopic tree thermometers. Nature 261, 284–288 (1976). https://doi.org/10.1038/261284a0

    Article  Google Scholar 

  32. Wilson, A.T.; Grinsted, M.J.: 12C/13C in cellulose and lignin as palaeothermometers. Nature 265, 133–135 (1977). https://doi.org/10.1038/265133a0

    Article  Google Scholar 

  33. Mischel, M.; Esper, J.; Keppler, F.; Greule, M.; Werner, W.: δ2H, δ13C and δ18O from whole wood, α-cellulose and lignin methoxyl groups in Pinus sylvestris: a multi-parameter approach. Isot. Environ. Health Stud. 51, 553–568 (2015). https://doi.org/10.1080/10256016.2015.1056181

    Article  Google Scholar 

  34. Pawelczyk, S.; Pazdur, A.; Halas, S.: Stable carbon isotopic composition of tree rings from a pine tree from Augustów Wilderness, Poland, as a temperature and local environment conditions indicator. Isot. Environ. Health Stud. 40, 145–154 (2004). https://doi.org/10.1080/10256010410001671032

    Article  Google Scholar 

  35. Epstein, S.; Yapp, C.J.; Hall, J.H.: The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth Planet. Sci. Lett. 30, 241–251 (1976). https://doi.org/10.1016/0012-821X(76)90251-X

    Article  Google Scholar 

  36. Schollaen, K.; Baschek, H.; Heinrich, I.; Slotta, F.; Pauly, M.; Helle, G.: A guideline for sample preparation in modern tree-ring stable isotope research. Dendrochronologia 44, 133–145 (2017). https://doi.org/10.1016/j.dendro.2017.05.002

    Article  Google Scholar 

  37. Leavitt, S.W.; Danzer, S.R.: Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal. Chem. 65, 87–89 (1993). https://doi.org/10.1021/ac00049a017

    Article  Google Scholar 

  38. Lin, W.; Noormets, A.; King, J.S.; Sun, G.; McNulty, S.; Domec, J.-C.: An extractive removal step optimized for a high-throughput α-cellulose extraction method for δ13C and δ18O stable isotope ratio analysis in conifer tree rings. Tree Physiol. (2016). https://doi.org/10.1093/treephys/tpw084

    Article  Google Scholar 

  39. Harlow, B.A.; Marshall, J.D.; Robinson, A.P.: A multi-species comparison of δ13C from whole wood, extractive-free wood and holocellulose. Tree Physiol. 26, 767–774 (2006)

    Google Scholar 

  40. Verheyden, A.; Roggeman, M.; Bouillon, S.; Elskens, M.; Beeckman, H.; Koedam, N.: Comparison between δ13C of α-cellulose and bulk wood in the mangrove tree Rhizophora mucronata: implications for dendrochemistry. Chem. Geol. 219, 275–282 (2005). https://doi.org/10.1016/j.chemgeo.2005.02.015

    Article  Google Scholar 

  41. Gori, Y.; Wehrens, R.; Greule, M.; Keppler, F.; Ziller, L.; La Porta, N.; Camin, F.: Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies: C, H and O stable isotopes of tree rings as climate proxies. Rapid Commun. Mass Spectrom. 27, 265–275 (2013). https://doi.org/10.1002/rcm.6446

    Article  Google Scholar 

  42. Kress, A.; Young, G.H.F.; Saurer, M.; Loader, N.J.; Siegwolf, R.T.W.; McCarroll, D.: Stable isotope coherence in the earlywood and latewood of tree-line conifers. Chem. Geol. 268, 52–57 (2009). https://doi.org/10.1016/j.chemgeo.2009.07.008

    Article  Google Scholar 

  43. Riechelmann, D.F.C.; Maus, M.; Dindorf, W.; Konter, O.; Schöne, B.R.; Esper, J.: Comparison of δ13C and δ18O from cellulose, whole wood, and resin-free whole wood from an old high elevation Pinus uncinata in the Spanish central Pyrenees. Isot. Environ. Health Stud. 52, 694–705 (2016). https://doi.org/10.1080/10256016.2016.1161622

    Article  Google Scholar 

  44. Sidorova, O.V.; Siegwolf, R.T.W.; Saurer, M.; Shashkin, A.V.; Knorre, A.A.; Prokushkin, A.S.; Vaganov, E.A.; Kirdyanov, A.V.: Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north? Oecologia 161, 825–835 (2009). https://doi.org/10.1007/s00442-009-1411-0

    Article  Google Scholar 

  45. Sidorova, O.V.; Siegwolf, R.T.W.; Saurer, M.; Naurzbaev, M.M.; Vaganov, E.A.: Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early medieval and recent periods: isotopes in Siberian tree rings. J. Geophys. Res. Biogeosci. (2008). https://doi.org/10.1029/2007JG000473

    Article  Google Scholar 

  46. Schleser, G.H.; Anhuf, D.; Helle, G.; Vos, H.: A remarkable relationship of the stable carbon isotopic compositions of wood and cellulose in tree-rings of the tropical species Cariniana micrantha (Ducke) from Brazil. Chem. Geol. 401, 59–66 (2015). https://doi.org/10.1016/j.chemgeo.2015.02.014

    Article  Google Scholar 

  47. Borella, S.; Leuenberger, M.; Saurer, M.; Siegwolf, R.: Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction. J. Geophys. Res. Atmos. 103, 19519–19526 (1998). https://doi.org/10.1029/98JD01169

    Article  Google Scholar 

  48. Loader, N.J.; Robertson, I.; McCarroll, D.: Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 196, 395–407 (2003). https://doi.org/10.1016/S0031-0182(03)00466-8

    Article  Google Scholar 

  49. Mazany, T.; Lerman, J.C.; Long, A.: Carbon-13 in tree-ring cellulose as an indicator of past climates. Nature 287, 432–435 (1980). https://doi.org/10.1038/287432a0

    Article  Google Scholar 

  50. He, M.; Yang, B.; Bräuning, A.; Rossi, S.; Ljungqvist, F.C.; Shishov, V.; Grießinger, J.; Wang, J.; Liu, J.; Qin, C.: Recent advances in dendroclimatology in China. Earth Sci. Rev. 194, 521–535 (2019). https://doi.org/10.1016/j.earscirev.2019.02.012

    Article  Google Scholar 

  51. Klesse, S.; DeRose, R.J.; Guiterman, C.H.; Lynch, A.M.; O’Connor, C.D.; Shaw, J.D.; Evans, M.E.K.: Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun. 9, 5336 (2018). https://doi.org/10.1038/s41467-018-07800-y

    Article  Google Scholar 

  52. Drobyshev, I.; Gewehr, S.; Berninger, F.; Bergeron, Y.: Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J. Ecol. 101, 231–242 (2013). https://doi.org/10.1111/1365-2745.12007

    Article  Google Scholar 

  53. Duchesne, L.; D’Orangeville, L.; Ouimet, R.; Houle, D.; Kneeshaw, D.: Extracting coherent tree-ring climatic signals across spatial scales from extensive forest inventory data. PLoS ONE 12, e0189444 (2017). https://doi.org/10.1371/journal.pone.0189444

    Article  Google Scholar 

  54. Neukom, R.; Luterbacher, J.; Villalba, R.; Küttel, M.; Frank, D.; Jones, P.D.; Grosjean, M.; Esper, J.; Lopez, L.; Wanner, H.: Multi-centennial summer and winter precipitation variability in southern South America: South American precipitation variability. Geophys. Res. Lett. (2010). https://doi.org/10.1029/2010GL043680

    Article  Google Scholar 

  55. Zhou, Z.: Masson Pine in China. China Forestry Publishing House, Beijing (2001)

    Google Scholar 

  56. Farjon, A.: A Handbook of the World’s Conifers. Brill, Leiden (2010)

    Google Scholar 

  57. Fritts, H.C.: Tree Rings and Climate. Academic Press, London (1976)

    Google Scholar 

  58. Holmes, R.L.: Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 67–78 (1983)

    Google Scholar 

  59. Grissino-Mayer, H.D.; Blount, H.C.; Miller, A.C.: Tree-ring dating and the ethnohistory of the naval stores industry in Southern Georgia. Tree Ring Res. 57, 3–13 (2001)

    Google Scholar 

  60. Cook, E.R.: A time series analysis approach to tree ring standardization (1985)

  61. Bunn, A.G.; Jansma, E.; Korpela, M.; Westfall, R.D.; Baldwin, J.: Using simulations and data to evaluate mean sensitivity (ζ) as a useful statistic in dendrochronology. Dendrochronologia 31, 250–254 (2013). https://doi.org/10.1016/j.dendro.2013.01.004

    Article  Google Scholar 

  62. Briffa, K.R.; Jones, P.D.: Basic chronology statistics and assessment. In: Cook, E.R., Kairiukstis, L.A. (eds.) Methods of Dendrochronology: Applications in the Environmental Sciences, pp. 137–152. Kluwer Academic Publishers, Boston (1990)

    Google Scholar 

  63. Speer, J.H.: Fundamentals of Tree-Ring Research. University of Arizona Press, Tucson (2010)

    Google Scholar 

  64. Wigley, T.M.L.; Briffa, K.R.; Jones, P.D.: On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984). https://doi.org/10.1175/1520-0450(1984)023%3c0201:OTAVOC%3e2.0.CO;2

    Article  Google Scholar 

  65. Leavitt, S.W.: Tree-ring isotopic pooling without regard to mass: no difference from averaging δ13C values of each tree. Chem. Geol. 252, 52–55 (2008). https://doi.org/10.1016/j.chemgeo.2008.01.014

    Article  Google Scholar 

  66. Qian, J.; Lü, J.; Tu, Q.; Wang, S.: Reconstruction of the climate in the Tianmu Mountain area, Zhejiang Province, in the last 160 years by σ13C sequence of tree ring α-cellulose. Sci. China Ser. D 45, 409–419 (2002). https://doi.org/10.1360/02yd9043

    Article  Google Scholar 

  67. Loader, N.J.; Robertson, I.; Barker, A.C.; Switsur, V.R.; Waterhouse, J.S.: An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem. Geol. 136, 313–317 (1997). https://doi.org/10.1016/S0009-2541(96)00133-7

    Article  Google Scholar 

  68. Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957). https://doi.org/10.1016/0016-7037(57)90024-8

    Article  Google Scholar 

  69. Dorado Liñán, I.; Gutiérrez, E.; Helle, G.; Heinrich, I.; Andreu-Hayles, L.; Planells, O.; Leuenberger, M.; Bürger, C.; Schleser, G.: Pooled versus separate measurements of tree-ring stable isotopes. Sci. Total Environ. 409, 2244–2251 (2011). https://doi.org/10.1016/j.scitotenv.2011.02.010

    Article  Google Scholar 

  70. Liu, Y.; Wang, R.; Leavitt, S.W.; Song, H.; Linderholm, H.W.; Li, Q.; An, Z.: Individual and pooled tree-ring stable-carbon isotope series in Chinese pine from the Nan Wutai region, China: common signal and climate relationships. Chem. Geol. 330–331, 17–26 (2012). https://doi.org/10.1016/j.chemgeo.2012.08.008

    Article  Google Scholar 

  71. McCarroll, D.; Loader, N.J.: Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801 (2004). https://doi.org/10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  72. McCarroll, D.; Gagen, M.H.; Loader, N.J.; Robertson, I.; Anchukaitis, K.J.; Los, S.; Young, G.H.F.; Jalkanen, R.; Kirchhefer, A.; Waterhouse, J.S.: Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim. Cosmochim. Acta 73, 1539–1547 (2009). https://doi.org/10.1016/j.gca.2008.11.041

    Article  Google Scholar 

  73. Cullen, L.E.; Grierson, P.F.: Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla? Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 206–216 (2006). https://doi.org/10.1016/j.palaeo.2005.11.003

    Article  Google Scholar 

  74. Eglin, T.; Maunoury-Danger, F.; Fresneau, C.; Lelarge, C.; Pollet, B.; Lapierre, C.; Francois, C.; Damesin, C.: Biochemical composition is not the main factor influencing variability in carbon isotope composition of tree rings. Tree Physiol. 28, 1619–1628 (2008)

    Google Scholar 

  75. Szymczak, S.; Joachimski, M.M.; Bräuning, A.; Hetzer, T.; Kuhlemann, J.: Comparison of whole wood and cellulose carbon and oxygen isotope series from Pinus nigra ssp. laricio (Corsica/France). Dendrochronologia 29, 219–226 (2011). https://doi.org/10.1016/j.dendro.2011.04.001

    Article  Google Scholar 

  76. Welch, B.L.: On the comparison of several mean values: an alternative approach. Biometrika 38, 330–336 (1951). https://doi.org/10.1093/biomet/38.3-4.330

    Article  MathSciNet  MATH  Google Scholar 

  77. Bartlett, M.S.: Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. A 160, 268–282 (1937). https://doi.org/10.1098/rspa.1937.0109

    Article  MATH  Google Scholar 

  78. Fekedulegn, B.D.; Colbert, J.J.; Hicks Jr., R.R.; Schuckers, M.E.: Coping with Multicollinearity: An Example on Application of Principal Components Regression in Dendroecology. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square (2002)

    Google Scholar 

  79. Van Sambeek, J.W.; Dawson, J.O.; Ponder, F.J.; Loewenstein, E.F.; Fralish, J.S.: 13th Central Hardwoods Forest Conference. U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul (2003)

    Google Scholar 

  80. Harrell, F.E.: Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer, Cham (2015)

    MATH  Google Scholar 

  81. May, R.J.; Maier, H.R.; Dandy, G.C.; Fernando, T.M.K.G.: Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Model. Softw. 23, 1312–1326 (2008). https://doi.org/10.1016/j.envsoft.2008.03.007

    Article  Google Scholar 

  82. Chen, L.; Ye, L.; Singh, V.; Zhou, J.; Guo, S.: Determination of input for artificial neural networks for flood forecasting using the copula entropy method. J. Hydrol. Eng. 19, 04014021 (2014). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000932

    Article  Google Scholar 

  83. Wang, L.; Yan, Y.; Wang, X.; Wang, T.: Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement. Meas. Sci. Technol. 28, 035305 (2017). https://doi.org/10.1088/1361-6501/aa57d6

    Article  Google Scholar 

  84. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2019)

    Google Scholar 

  85. Zang, C.; Biondi, F.: treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography 38, 431–436 (2015). https://doi.org/10.1111/ecog.01335

    Article  Google Scholar 

  86. Pohlert, T.: trend: non-parametric trend tests and change-point detection, R package version 0.0.1 (2015). http://rgdoi.net/10.13140/RG.2.1.2633.4243. Accessed 11 Jan 2020

  87. Bunn, A.G.: A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008). https://doi.org/10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  88. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016)

    MATH  Google Scholar 

  89. Meko, D.M.; Touchan, R.; Anchukaitis, K.J.: Seascorr: a MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Comput. Geosci. 37, 1234–1241 (2011). https://doi.org/10.1016/j.cageo.2011.01.013

    Article  Google Scholar 

  90. Yang, B.; Qin, C.; Wang, J.; He, M.; Melvin, T.M.; Osborn, T.J.; Briffa, K.R.: A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc. Natl. Acad. Sci. 111, 2903–2908 (2014). https://doi.org/10.1073/pnas.1319238111

    Article  Google Scholar 

  91. Liu, X.; Nie, Y.; Wen, F.: Seasonal dynamics of stem radial increment of Pinus taiwanensis Hayata and its response to environmental factors in the Lushan Mountains, Southeastern China. Forests 9, 387 (2018). https://doi.org/10.3390/f9070387

    Article  Google Scholar 

  92. Treydte, K.; Frank, D.; Esper, J.; Andreu, L.; Bednarz, Z.; Berninger, F.; Boettger, T.; D’Alessandro, C.M.; Etien, N.; Filot, M.; Grabner, M.; Guillemin, M.T.; Gutierrez, E.; Haupt, M.; Helle, G.; Hilasvuori, E.; Jungner, H.; Kalela-Brundin, M.; Krapiec, M.; Leuenberger, M.; Loader, N.J.; Masson-Delmotte, V.; Pazdur, A.; Pawelczyk, S.; Pierre, M.; Planells, O.; Pukiene, R.; Reynolds-Henne, C.E.; Rinne, K.T.; Saracino, A.; Saurer, M.; Sonninen, E.; Stievenard, M.; Switsur, V.R.; Szczepanek, M.; Szychowska-Krapiec, E.; Todaro, L.; Waterhouse, J.S.; Weigl, M.; Schleser, G.H.: Signal strength and climate calibration of a European tree-ring isotope network. Geophys. Res. Lett. (2007). https://doi.org/10.1029/2007GL031106

    Article  Google Scholar 

  93. Liu, Y.; Ta, W.; Li, Q.; Song, H.; Sun, C.; Cai, Q.; Liu, H.; Wang, L.; Hu, S.; Sun, J.; Zhang, W.; Li, W.: Tree-ring stable carbon isotope-based April–June relative humidity reconstruction since ad 1648 in Mt. Tianmu, China. Clim. Dyn. 50, 1733–1745 (2018). https://doi.org/10.1007/s00382-017-3718-6

    Article  Google Scholar 

  94. Ferrio, J.P.; Voltas, J.: Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B 57, 164–173 (2005). https://doi.org/10.1111/j.1600-0889.2005.00137.x

    Article  Google Scholar 

  95. Hoper, S.T.; McCormac, F.G.; Hogg, A.G.; Higham, T.F.G.; Head, M.J.: Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40, 45–50 (1997). https://doi.org/10.1017/S0033822200017860

    Article  Google Scholar 

  96. Boettger, T.; Haupt, M.; Knöller, K.; Weise, S.M.; Waterhouse, J.S.; Rinne, K.T.; Loader, N.J.; Sonninen, E.; Jungner, H.; Masson-Delmotte, V.; Stievenard, M.; Guillemin, M.-T.; Pierre, M.; Pazdur, A.; Leuenberger, M.; Filot, M.; Saurer, M.; Reynolds, C.E.; Helle, G.; Schleser, G.H.: Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal. Chem. 79, 4603–4612 (2007). https://doi.org/10.1021/ac0700023

    Article  Google Scholar 

  97. Pettersen, R.C.: The chemical composition of wood. In: Rowell, R. (ed.) The Chemistry of Solid Wood, pp. 57–126. American Chemical Society, Washington, DC (1984)

    Google Scholar 

  98. Gessler, A.; Ferrio, J.P.; Hommel, R.; Treydte, K.; Werner, R.A.; Monson, R.K.: Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 34, 796–818 (2014). https://doi.org/10.1093/treephys/tpu040

    Article  Google Scholar 

  99. Robertson, I.; Loader, N.J.; McCarroll, D.; Carter, A.H.C.; Cheng, L.; Leavitt, S.W.: δ13C of tree-ring lignin as an indirect measure of climate change. Water Air Soil Pollut. Focus 4, 531–544 (2004). https://doi.org/10.1023/B:WAFO.0000028376.06179.af

    Article  Google Scholar 

  100. Schleser, G.H.; Frielingsdorf, J.; Blair, A.: Carbon isotope behaviour in wood and cellulose during artificial aging. Chem. Geol. 158, 121–130 (1999). https://doi.org/10.1016/S0009-2541(99)00024-8

    Article  Google Scholar 

  101. Andreu-Hayles, L.; Levesque, M.; Martin-Benito, D.; Huang, W.; Harris, R.; Oelkers, R.; Leland, C.; Martin-Fernández, J.; Anchukaitis, K.J.; Helle, G.: A high yield cellulose extraction system for small whole wood samples and dual measurement of carbon and oxygen stable isotopes. Chem. Geol. 504, 53–65 (2019). https://doi.org/10.1016/j.chemgeo.2018.09.007

    Article  Google Scholar 

  102. Fu, P.-L.; Grießinger, J.; Gebrekirstos, A.; Fan, Z.-X.; Bräuning, A.: Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in Southwestern China during the recent decades. Front. Plant Sci. 7, 2050 (2017). https://doi.org/10.3389/fpls.2016.02050

    Article  Google Scholar 

  103. Guo, G.; Fang, K.; Li, J.; Linderholm, H.; Li, D.; Zhou, F.; Dong, Z.; Li, Y.; Wang, L.: Increasing intrinsic water-use efficiency over the past 160 years does not stimulate tree growth in southeastern China. Clim. Res. 76, 115–130 (2018). https://doi.org/10.3354/cr01526

    Article  Google Scholar 

  104. Porter, T.J.; Pisaric, M.F.J.; Kokelj, S.V.; Edwards, T.W.D.: Climatic signals in δ13C and δ18O of tree-rings from white spruce in the Mackenzie Delta Region, Northern Canada. Arct. Antarct. Alp. Res. 41, 497–505 (2009). https://doi.org/10.1657/1938-4246-41.4.497

    Article  Google Scholar 

  105. Sensuła, B.; Wilczyński, S.: Tree-ring widths and the stable isotope composition of pine tree-rings as climate indicators in the most industrialised part of Poland during CO2 elevation. Geochronometria 45, 130–145 (2018). https://doi.org/10.1515/geochr-2015-0094

    Article  Google Scholar 

  106. Sensuła, B.M.: The impact of climate, sulfur dioxide, and industrial dust on δ18O and δ13C in glucose from pine tree rings growing in an industrialized area in the southern part of Poland. Water Air Soil Pollut. 227, 106 (2016). https://doi.org/10.1007/s11270-016-2808-0

    Article  Google Scholar 

  107. Brienen, R.J.W.; Gloor, E.; Clerici, S.; Newton, R.; Arppe, L.; Boom, A.; Bottrell, S.; Callaghan, M.; Heaton, T.; Helama, S.; Helle, G.; Leng, M.J.; Mielikäinen, K.; Oinonen, M.; Timonen, M.: Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nat. Commun. 8, 288 (2017). https://doi.org/10.1038/s41467-017-00225-z

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the helpful and constructive comments of my anonymous reviewers and managing editor (Bassam EL Ali).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 41271204), and the Social Science Foundation of Anhui, China (Grant No. SK2016A0544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Wang, J. & Lei, C. Climate-Sensitivity Comparisons for Whole Wood, Holocellulose, and α-Cellulose Carbon Isotope Series in Masson Pine. Arab J Sci Eng 46, 509–524 (2021). https://doi.org/10.1007/s13369-020-04629-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04629-w

Keywords

Navigation