Skip to main content
Log in

Identification of suitable reference genes for normalization of real-time quantitative PCR data in pecan (Carya illinoinensis)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This study proposed the combination of PR26S and PP1 as a good choice for RT-qPCR normalization in pecan under abiotic stress, developing kernels, grafting, and various tissues.

Abstract

Reference gene selection is an essential pre-requisite to generate reliable results in real-time quantitative polymerase chain reaction (RT-qPCR) analysis. However, studies regarding systematic validation of suitable reference genes in pecan are still lacking. In this study, 17 candidate reference genes were selected and evaluated for their expression stabilities in pecan under various experimental conditions, including various tissues, developing kernels, grafting, and two plant tissues (leaves and roots) subjected to three abiotic stresses (salt, drought, and Zn deficiency). The stability of the candidate genes was assessed by geNorm, NormFinder, and BestKeeper, and their outputs were integrated to obtain a final comprehensive rank of stability based on the geometric mean. The results indicated that samples under different experimental conditions possessed their own best reference genes, and using two reference genes for RT-qPCR normalization was recommended for the tested experiments. Overall, the combination of 26S protease regulatory subunit 7A (PR26S) and serine/threonine-protein phosphatase-1 (PP1) was recognized as a good choice for RT-qPCR normalization in pecan across all the treatments. More importantly, the widely used alpha-tubulin (α-TUB), ubiquitin (UBQ), and actin (ACT) genes were not the best suitable reference genes in most of our experiments. Our results will be helpful for future gene-expression studies in pecan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

α-TUB:

Alpha-tubulin

β-TUB:

Beta-tubulin

ACT:

Actin

ADP-RF:

ADP-ribosylation factor

CAC:

Clathrin adaptor complex

CAD:

Cinnamyl alcohol dehydrogenase

CYP:

Cyclophilin

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HEL:

RNA helicase family

PEG:

Polyethylene glycol

PP1:

Serine/threonine-protein phosphatase-1

PP2A:

Serine/threonine-protein phosphatase 2A

PR26S:

26S protease regulatory subunit 7A

PTBP1:

Polypyrimidine tract-binding protein 1

RPN6:

26S proteasome non-ATPase

SAD:

Stearoyl-ACP desaturase

TLF:

Translation factor

TIP41:

TIP41-like family protein

UBQ:

Ubiquitin

60S:

60S ribosomal protein L22

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilharva MG, Martins CR, Hamann JJ, Fronza D, De Marco R, Malgarim MB (2018) Pecan: from Research to the Brazilian Reality. J Exp Agric Int 23:1–16

    Article  Google Scholar 

  • Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  PubMed  Google Scholar 

  • Bustin S, Benes V, Nolan T, Pfaffl M (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    Article  CAS  PubMed  Google Scholar 

  • Castro-Quezada P, Aarrouf J, Claverie M, Favery B, Mugniéry D, Lefebvre V, Caromel B (2013) Identification of reference genes for normalizing RNA expression in potato roots infected with cyst nematodes. Plant Mol Biol Rep 31:936–945

    Article  CAS  Google Scholar 

  • Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Li L, Xu F, Cheng S, Cao F, Wang Y, Yuan H, Jiang D, Wu C (2013) Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 40:707–721

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50:227–230

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Chen P, Zhang N, Huang S, Zhang H, Wang S, Li X, Guo Y, Wang Z (2019) Evaluation of reference genes for quantitative real-time PCR analysis of gene expression in Hainan medaka (Oryzias curvinotus). Gene Rep 14:94–99

    Article  Google Scholar 

  • Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C (2007) Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12:169–176

    Article  CAS  PubMed  Google Scholar 

  • Feng K, Liu JX, Xing GM, Sun S, Li S, Duan AQ, Wang F, Li MY, Xu ZS, Xiong AS (2019) Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 7:e7925

    Article  PubMed  PubMed Central  Google Scholar 

  • Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Garcıa-Vallejo J, Van Het Hof B, Robben J, Van Wijk J, Van Die I, Joziasse D, Van Dijk W (2004) Approach for defining endogenous reference genes in gene expression experiments. Anal Biochem 329:293–299

    Article  PubMed  CAS  Google Scholar 

  • Haller F, Kulle B, Schwager S, Gunawan B, von Heydebreck A, Sültmann H, Füzesi L (2004) Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization. Anal Biochem 335:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu X, Zhang L, Nan S, Miao X, Yang P, Duan G, Fu H (2018) Selection and validation of reference genes for quantitative real-time PCR in Artemisia sphaerocephala based on transcriptome sequence data. Gene 657:39–49

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Huang Y, Sun Z, Huang J, Wang Z (2017) Transcriptome analysis of genes involved in lipid biosynthesis in the developing embryo of pecan (Carya illinoinensis). J Agric Food Chem 65:4223–4236

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xiao L, Zhang Z, Zhang R, Wang Z, Huang C, Huang R, Luan Y, Fan T, Wang J (2019) The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. GigaScience 8:giz036

    PubMed  PubMed Central  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Li M, Luo H, Zhai M, Guo Z, Li Y, Qiao Y, Wang L (2018) Transcriptome survey reveals candidate genes involved in lipid metabolism of Carya illinoinensis. Int J Agric Biol 20:991–1004

    CAS  Google Scholar 

  • Jin H, Li S, Villegas A (2006) Down-regulation of the 26S proteasome subunit RPN9 inhibits viral systemic transport and alters plant vascular development. Plant Physiol 142:651–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cheng J, Zhang J, Ja TDS, Wang C, Sun H (2015) Validation of reference genes for accurate normalization of gene expression in Lilium davidii var. unicolor for real time quantitative PCR. PLoS One 10:e0141323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Hu L, Wang X, Liu H, Tian H, Wang J (2019) Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostii. Mol Biol Rep 46:6003–6011

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Jin Y, Li M, Dong L, Guo D, Lu C, Qi H (2018) Analysis of CmCADs and three lignifying enzymes in oriental melon (‘CaiHong7’) seedlings in response to three abiotic stresses. Sci Hortic 237:257–268

    Article  CAS  Google Scholar 

  • Luo Y, Wang G, Wang C, Gong Y, Bian Y, Zhou Y (2019) Selection and validation of reference genes for qRT-PCR in Lentinula edodes under different experimental conditions. Genes 10:647

    Article  CAS  PubMed Central  Google Scholar 

  • Ma R, Xu S, Zhao Y, Xia B, Wang R (2016) Selection and validation of appropriate reference genes for quantitative real-time PCR analysis of gene expression in Lycoris aurea. Front Plant Sci 7:536

    PubMed  PubMed Central  Google Scholar 

  • Mattison CP, Rai R, Settlage RE, Hinchliffe DJ, Madison C, Bland JM, Brashear S, Graham CJ, Tarver MR, Florane C (2017) RNA-Seq analysis of developing pecan (Carya illinoinensis) embryos reveals parallel expression patterns among allergen and lipid metabolism genes. J Agric Food Chem 65:1443–1455

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Nesbitt M (2011) Effectiveness of soil salinity management practices in basin-irrigated pecan orchards. HortTechnology 21:569–576

    Article  CAS  Google Scholar 

  • Mo Z, He H, Su W, Peng F (2017) Analysis of differentially accumulated proteins associated with graft union formation in pecan ( Carya illinoensis ). Sci Hortic 224:126–134

    Article  CAS  Google Scholar 

  • Mo Z, Feng G, Su W, Liu Z, Peng F (2018a) Identification of miRNAs Associated with Graft Union Development in Pecan [Carya illinoinensis (Wangenh.) K. Koch]. Forests 9:472

    Article  Google Scholar 

  • Mo Z, Feng G, Su W, Liu Z, Peng F (2018b) Transcriptomic analysis provides insights into grafting union development in pecan (Carya illinoinensis). Genes 9:71

    Article  PubMed Central  CAS  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Niu K, Shi Y, Ma H (2017) Selection of candidate reference genes for gene expression analysis in Kentucky Bluegrass (Poa pratensis L.) under abiotic stress. Front Plant Sci 8:193

    PubMed  PubMed Central  Google Scholar 

  • Othman Y, VanLeeuwen D, Heerema R, Hilaire RS (2014) Midday stem water potential values needed to maintain photosynthesis and leaf gas exchange established for pecan. J Am Soc Hort Sci 139:537–546

    Article  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Ruijter J, Ramakers C, Hoogaars W, Karlen Y, Bakker O, Van den Hoff M, Moorman A (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks D (2002) Rainfall governs pecan stand homogeneity in native, wild habitats. J Am Soc Hortic Sci 127:860–868

    Article  Google Scholar 

  • Sun HF, Meng YP, Cui GM, Cao QF, Li J, Liang AH (2009) Selection of housekeeping genes for gene expression studies on the development of fruit bearing shoots in Chinese jujube (Ziziphus jujube Mill.). Mol Biol Rep 36:2183

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Y, Zhou P (2013) Validation of reference genes for quantitative real-time PCR during Chinese wolfberry fruit development. Plant Physiol Biochem 70:304–310

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gu C, Xuan L, Hua J, Shi Q, Fan W, Yin Y, Yu F (2017) Identification of suitable reference genes in Taxodium ‘Zhongshanshan’under abiotic stresses. Trees 31:1519–1530

    Article  CAS  Google Scholar 

  • Xu Y, Li H, Li X, Lin J, Wang Z, Yang Q, Chang Y (2015) Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear. Acta Physiol Plant 37:40

    Article  CAS  Google Scholar 

  • Zhang R, Peng F, Li Y (2015) Pecan production in China. Sci Hortic 197:719–727

    Article  Google Scholar 

  • Zhao J, Yang F, Feng J, Wang Y, Lachenbruch B, Wang J, Wan X (2017) Genome-wide constitutively expressed gene analysis and new reference gene selection based on transcriptome data: a case study from poplar/canker disease interaction. Front Plant Sci 8:1876

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, Chen JY, Lu WJ, Li JG (2011) Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Niu J, Quan S (2018) Identification of appropriate reference genes for RT-qPCR analysis in Juglans regia L. PLoS ONE 13:e0209424

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, Fu D (2012) Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 7:e44405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhang L, Li W, Han S, Yang W, Qi L (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PLoS ONE 8:e53196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 31901347), the Basic Talent Project of Institute of Botany, Jiangsu Province and Chinese Academy of Science (JSPKLB202002), and Scientific Research Staring Foundation for the Doctor of Institute of Botany, Jiangsu Province and Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Contributions

JX and ZG designed the research; ZM, YC, WL, and XJ performed the experiments and data analysis; ZM wrote the manuscript; MZ and YL prepared the materials. All authors both read and approved the manuscript.

Corresponding author

Correspondence to Jiping Xuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Francisco M. Cánovas .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Z., Chen, Y., Lou, W. et al. Identification of suitable reference genes for normalization of real-time quantitative PCR data in pecan (Carya illinoinensis). Trees 34, 1233–1241 (2020). https://doi.org/10.1007/s00468-020-01993-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-020-01993-w

Keywords

Navigation