Skip to main content

Advertisement

Log in

A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, nickel/T-Nb2O5 nanoparticles encapsulated in mesoporous carbon nanofibers (denoted as Ni/T-Nb2O5@CNFs) are successfully prepared through a simple electrospinning route and succedent heating treatment. The presence of Ni in carbon nanofibers is beneficial for enhancing the electronic conductivity and the initial Coulombic efficiency. Ni/T-Nb2O5 nanoparticles are homogeneously incorporated in carbon nanofibers to form a nanocomposite system, which provides effective buffering during the lithiation/delithiation process for cycling stability. The Ni/T-Nb2O5@CNFs show high surface area (26.321 m2·g−1) and mesoporous microstructure, resulting in higher capacity and excellent rate performance. The Ni/T-Nb2O5@CNFs exhibit a remarkable capacity of 437 mAh·g−1 at a current density of 0.5 A·g−1 after 230 cycles and a capacity of 173 mAh·g−1 at a current density up to 10.0 A·g−1 after 1400 cycles. This work indicates that nickel/T-Nb2O5 nanoparticles encapsulated in carbon nanofibers can be a promising candidate for anode material in high-power LIBs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheong JY, Jung JW, Youn DY, Kim C, Yu S, Cho SH, Yoon KR, Kim ID. Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics. J Power Sources. 2017;360:434.

    Article  CAS  Google Scholar 

  2. Sun LY, Yang L, Li J, Narayan RL, Ning XH. Superior full-cell cycling and rate performance achieved by carbon coated hollow Fe3O4 nanoellipsoids for lithium ion battery. Electrochim Acta. 2018;288:71.

    Article  CAS  Google Scholar 

  3. Lou S, Cheng X, Zhao Y, Lushington A, Gao J, Li Q, Zuo P, Wang B, Gao Y, Ma Y, Du C, Yin G, Sun X. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy. 2017;34:15.

    Article  CAS  Google Scholar 

  4. Wang G, Zhu F, Xia J, Wang L, Meng Y, Zhang Y. Preparation of Co3O4/carbon derived from ionic liquid and its application in lithium-ion batteries. Electrochim Acta. 2017;257:138.

    Article  CAS  Google Scholar 

  5. Zheng Y, Li Y, Yao J, Huang Y, Xiao S. Facile synthesis of porous tubular NiO with considerable pseudocapacitance as high capacity and long life anode for lithium-ion batteries. Ceram Int. 2018;44(2):2568.

    Article  CAS  Google Scholar 

  6. Wang C, Higgins D, Wang F, Li D, Liu R, Xia G, Li N, Li Q, Xu H, Wu G. Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries. Nano Energy. 2014;9:334.

    Article  CAS  Google Scholar 

  7. Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N. Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J Electrochem Soc. 2006;153(3):A583.

    Article  CAS  Google Scholar 

  8. Lübke M, Sumboja A, Johnson ID, Brett DJL, Shearing PR, Liu Z, Darr JA. High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim Acta. 2016;192:363.

    Article  Google Scholar 

  9. Yang H, Xu R, Gong Y, Yao Y, Gu L, Yu Y. An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy. 2018;48:448.

    Article  CAS  Google Scholar 

  10. Lubimtsev AA, Kent PRC, Sumpter BG, Ganesh P. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. J Mater Chem A. 2013;1(47):14951.

    Article  CAS  Google Scholar 

  11. Come J, Augustyn V, Kim JW, Rozier P, Taberna PL, Gogotsi P, Long JW, Dunn B, Simon P. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J Electrochem Soc. 2014;161(5):A718.

    Article  CAS  Google Scholar 

  12. Zhu GN, Chen L, Wang YG, Wang CX, Che RC, Xia YY. Binary Li4Ti5O12–Li2Ti3O7 nanocomposite as an anode material for Li-ion batteries. Adv Funct Mater. 2013;23(5):640.

    Article  CAS  Google Scholar 

  13. Wang L, Bi X, Yang S. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv Mater. 2016;28(35):7672.

    Article  CAS  Google Scholar 

  14. Arunkumar P, Ashish AG, Babu B, Sarang S, Suresh A, Sharma CH, Thalakulam M, Shaijumon MM. Nb2O5/graphene nanocomposites for electrochemical energy storage. RSC Adv. 2015;5(74):59997.

    Article  CAS  Google Scholar 

  15. Idrees F, Cao CB, Ahmed R, Butt FK, Butt S, Tahir M, Tanveer M, Aslam I, Ali Z. Novel nano-flowers of Nb2O5 by template free synthesis and enhanced photocatalytic response under visible light. Sci Adv Mater. 2015;7(7):1298.

    Article  CAS  Google Scholar 

  16. Cui C, Wei Z, Zhou G, Wei W, Ma J, Chen L, Li C. Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. J Mater Chem A. 2018;6(16):7088.

    Article  CAS  Google Scholar 

  17. Bei PW, Rui L, Dong L. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    Article  Google Scholar 

  18. Yi TF, Zhu YR, Tao W, Luo S, Xie Y, Li XF. Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources. 2018;399:26.

    Article  CAS  Google Scholar 

  19. Li X, Hu X, Zhou L, Wen R, Xu X, Chou S, Chen L, Cao A-M, Dou S. A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. J Mater Chem A. 2019;7(19):11976.

    Article  CAS  Google Scholar 

  20. Li X, Liu T, Wang YX, Chou SL, Xu X, Cao A, Chen L. S/N-doped carbon nanofibers affording Fe7S8 particles with superior sodium storage. J Power Sources. 2020;451:227790.

    Article  CAS  Google Scholar 

  21. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010;10(11):4750.

    Article  CAS  Google Scholar 

  22. Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012;12(2):802.

    Article  CAS  Google Scholar 

  23. Li X, Sun Y, Xu X, Wang YX, Chou SL, Cao A, Chen L, Dou SX. Lotus rhizome-like S/N–C with embedded WS2 for superior sodium storage. J Mater Chem A. 2019;7(45):25932.

    Article  CAS  Google Scholar 

  24. Zhang G, Zhu J, Zeng W, Hou S, Gong F, Li F, Li CC, Duan H. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy. 2014;9:61.

    Article  Google Scholar 

  25. Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K, Pan F. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J Am Chem Soc. 2015;137(26):8364.

    Article  CAS  Google Scholar 

  26. Kang YM, Kim KT, Kim JH, Kim HS, Lee PS, Lee JY, Liu HK, Dou SX. Electrochemical properties of Co3O4, Ni–Co3O4 mixture and Ni–Co3O4 composite as anode materials for Li ion secondary batteries. J Power Sources. 2004;133(2):252.

    Article  CAS  Google Scholar 

  27. Zhu J, Hou J, Uliana A, Zhang Y, Tian M, van der Bruggen B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J Mater Chem A. 2018;6(9):3773.

    Article  CAS  Google Scholar 

  28. Lou S, Cheng X, Wang L, Gao J, Li Q, Ma Y, Gao Y, Zuo P, Du C, Yin G. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J Power Sources. 2017;361:80.

    Article  CAS  Google Scholar 

  29. Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv Mater. 2017;29(9):1605607.

    Article  Google Scholar 

  30. Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy. 2014;9:168.

    Article  CAS  Google Scholar 

  31. Li S, Xu Q, Uchaker E, Cao X, Cao GZ. Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm. 2016;18(14):2532.

    Article  CAS  Google Scholar 

  32. Kim H, Lim E, Jo C, Yoon G, Hwang J, Jeong S, Lee J, Kang K. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy. 2015;16:62.

    Article  CAS  Google Scholar 

  33. Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C. 2010;114(1):664.

    Article  Google Scholar 

  34. Wei M, Wei K, Ichihara M, Zhou H. Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun. 2008;10(7):980.

    Article  CAS  Google Scholar 

  35. Yang C, Yu S, Lin C, Lv F, Wu S, Yang Y, Wang W, Zhu Z-Z, Li J, Wang N, Guo S. Cr0.5Nb24.5O62 nanowires with high electronic conductivity for high-rate and long-life Lithium-ion storage. ACS Nano. 2017;11(4):4217.

    Article  CAS  Google Scholar 

  36. Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano. 2015;9(11):11200.

    Article  CAS  Google Scholar 

  37. Lyu F, Yu S, Li M, Wang Z, Nan B, Wu S, Cao L, Sun Z, Yang M, Wang W, Shang C, Lu Z. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chem Commun. 2017;53(13):2138.

    Article  CAS  Google Scholar 

  38. Dylla AG, Henkelman G, Stevenson KJ. Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res. 2013;46(5):1104.

    Article  CAS  Google Scholar 

  39. Zeng GY, Wang H, Guo J, Cha LM, Dou YH, Ma JM. Fabrication of Nb2O5/C nanocomposites as a high performance anode for lithium ion battery. Chin Chem Lett. 2017;28(4):755.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51771236, 51901249, U1904216) and the Science Fund for Distinguished Young Scholars of Hunan Province (No. 2018JJ1038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Bao Chen or Yue-Jiao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, SR., Zou, JP., Chen, LB. et al. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met. 40, 374–382 (2021). https://doi.org/10.1007/s12598-020-01444-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01444-y

Keywords

Navigation