Skip to main content

Advertisement

Log in

Plant-derived endoperoxides: structure, occurrence, and bioactivity

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Endoperoxides have received widespread interest as a research topic due to its ubiquitous structure, which confers interesting biological properties. It has been demonstrated that some endoperoxides possess antimalarial, cytotoxic, anti-inflammatory, neuroprotective, antiparasitic, antitumor, and antimicrobial activities. The present review summarizes the current knowledge about the structure, occurrence, peroxide detection methods, stability, biosynthesis, and biological activities of 206 endoperoxides isolated from 1911 to 2019, found in 115 plant species belonging to 36 different plant families. Thirty-five new endoperoxides of different plant species have been reported since the last published review. In order to simplify our analysis, we classified plant endoperoxides considering the nature of the secondary metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

11β-HSD1:

11β-Hydroxysteroid dehydrogenase type 1

CCID:

Circular chemo-repellent induced defect

EC50 :

Maximal effective concentration 50%

ED50 :

Effective dose 50%

GI50 :

Growth inhibitory concentration 50%

HBV:

Hepatitis B virus

IC12 :

Inhibitory concentration that gives an inhibition zone of 12 mm

l-NMMA:

N-methyl-l-arginine

LPS:

Lipopolysaccharide

MAP:

Mitogen-activated protein

MIC:

Minimum inhibitory concentration

MLC:

Minimum lethal concentration

NGF:

Nerve growth factor

PDE:

Phosphodiesterase

PKA:

Protein kinase A

ROS:

Reactive oxigen species

SERT:

Serotonin transporter protein

TPA:

12-O-Tetradecanoylphorbol-13-acetate

References

  • Abbaskhan A, Choudhary MI, Tsuda Y et al (2003) A new diepoxy-ent kauranoid, rugosinin, from Isodon rugosus. Planta Med 69:94–96

    PubMed  CAS  Google Scholar 

  • Acton N, Roth RJ (1992) On the conversion of dihydroartemisinic acid into artemisinin. J Org Chem 57:3610–3614

    CAS  Google Scholar 

  • Adelekan AM, Prozesky EA, Hussein AA et al (2008) Bioactive diterpenes and other constituents of Croton steenkampianus. J Nat Prod 71:1919–1922

    PubMed  CAS  Google Scholar 

  • Aguilar-Guadarrama AB, Rios MY (2004) Three new sesquiterpenes from Croton arboreous. J Nat Prod 67:914–917

    PubMed  CAS  Google Scholar 

  • Ahmed A, Jakupovic J, Bohlmann F et al (1990) Sesquiterpene lactones from Xanthium pungens. Phytochemistry 29:2211–2215

    CAS  Google Scholar 

  • Antimalaria Coordinating Research Group, Q (1979) Antimalaria studies on Qinghaosu. Chin Med J 92:811–816

    Google Scholar 

  • Bagchi A, Oshima Y, Hikino H (1988) Kanshones A and B, sesquiterpenoids of Nardostachys chinensis. Phytochemistry 27:1199–1201

    CAS  Google Scholar 

  • Barrero AF, Sanchez JF, Alvarez-Manzaneda EJ et al (1991) Endoperoxide diterpenoids and other constituents from Abies marocana. Phytochemistry 30:593–597

    CAS  Google Scholar 

  • Barrero AF, Sanchez JF, Alvarez-Manzaneda EJ et al (1994) Terpenoids of the wood of Abies marocana. Phytochemistry 35:1271–1274

    CAS  Google Scholar 

  • Barrero AF, Quílez JF, Herrador MM et al (2004) Oxygenated diterpenes and other constituents from Moroccan Juniperus phoenicea and Juniperus thurifera var. africana. Phytochemistry 65:2507–2515

    PubMed  CAS  Google Scholar 

  • Barrero AF, Quílez Del Moral JF, Mar Herrador M et al (2005) Abietane diterpenes from the cones of Cedrus atlantica. Phytochemistry 66:105–111

    PubMed  CAS  Google Scholar 

  • Bastos EL, Farahani P, Bechara EJH et al (2017) Four-membered cyclic peroxides: carriers of chemical energy. J Phys Org Chem 30:1–18

    Google Scholar 

  • Becker H, Martini U (1999) Terpenoids from the in vitro cultured liverwort Riella helicophylla. Z Naturforsch C J Biosci 54:997–1004

    CAS  Google Scholar 

  • Bertrand M, Fliszar S, Rousseau Y (1968) Mass spectrometry of cyclic organic peroxides. J Org Chem 33:1931–1934

    CAS  Google Scholar 

  • Bezerra DP, Marinho Filho JDB, Alves APNN et al (2009) Antitumor activity of the essential oil from the leaves of Croton regelianus and its component ascaridole. Chem Biodivers 6:1224–1231

    PubMed  CAS  Google Scholar 

  • Bi Y, Jia L, Shi S et al (2010) New sesquiterpenes from the flowers of Chrysanthemum indicum L. Helv Chim Acta 93:1953–1959

    CAS  Google Scholar 

  • Blaschke M, Zehl M, Hartl B et al (2017) Phytochemistry isolation of eudesmanes from Pluchea odorata and evaluation of their effects on cancer cell growth and tumor invasiveness in vitro. Phytochemistry 141:37–47

    PubMed  CAS  Google Scholar 

  • Bohlmann F, Jakupovic J, Zdero C (1978) Neue norsesquiterpene aus Rudbeckia laciniata und Senecio paludaffinis. Phytochemistry 17:2034–2036

    CAS  Google Scholar 

  • Bohlmann F, Zdero C, Jakupovic J et al (1983) Types of sesquiterpenes from Artemisia filifolia. Phytochemistry 22:503–507

    CAS  Google Scholar 

  • Bórquez J, Bartolucci NL, Echiburú-Chau C et al (2016) Isolation of cytotoxic diterpenoids from the Chilean medicinal plant Azorella compacta Phil from the Atacama Desert by high-speed counter-current chromatography. J Sci Food Agric 96:2832–2838

    PubMed  Google Scholar 

  • Brown GD, Sy LK (2004) Synthesis of labelled dihydroartemisinic acid. Tetrahedron 60:1125–1138

    CAS  Google Scholar 

  • Bryant L, Flatley B, Patole C et al (2015) Proteomic analysis of Artemisia annua—towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biol 15:175

    PubMed  PubMed Central  Google Scholar 

  • Bu M, Yang BB, Hu L (2014) Natural bioactive sterol 5α,8α-endoperoxides as drug lead compounds. Med Chem. https://doi.org/10.4172/2161-0444.1000217

    Article  Google Scholar 

  • Bu M, Yang BB, Hu L (2016) Natural endoperoxides as drug lead compounds. Curr Med Chem 23:383–405

    PubMed  CAS  Google Scholar 

  • Casero CN, Oberti JC, Orozco CI et al (2015) Withanolides from three species of the genus Deprea (Solanaceae). Chemotaxonomical considerations. Phytochemistry 110:83–90

    PubMed  CAS  Google Scholar 

  • Casteel DA (1992) Peroxy natural products. Nat Prod Rep 9:289–312

    PubMed  CAS  Google Scholar 

  • Chamy MC, Piovano M, Garbarino JA et al (1993) Endoperoxide diterpenes from Calceolaria purpurea. Phytochemistry 34:1103–1106

    CAS  Google Scholar 

  • Chang SY, Cheng MJ, Kuo YH et al (2008) Secondary metabolites from the stem bark of Litsea akoensis and their cytotoxic activity. Helv Chim Acta 91:1156–1165

    CAS  Google Scholar 

  • Chen GF, Li ZL, Tang C et al (1990) Structure and stereochemistry of pseudolarolide-I, a novel cytotoxic peroxytriterpene dilactone from Pseudolarix kaempferi. Heterocycles 31:1903–1906

    CAS  Google Scholar 

  • Chen JJ, Fei DQ, Chen SG et al (2008) Antimicrobial triterpenoids from Vladimiria muliensis. J Nat Prod 71:547–550

    PubMed  CAS  Google Scholar 

  • Chen YP, Ying SS, Zheng HH et al (2017) Novel serotonin transporter regulators: natural aristolane-and nardosinane-types of sesquiterpenoids from Nardostachys chinensis Batal. Sci Rep 7:1–12

    Google Scholar 

  • Chiang YM, Kuo YH (2001) New peroxy triterpenes from the aerial roots of Ficus microcarpa. J Nat Prod 64:436–439

    PubMed  CAS  Google Scholar 

  • Chimnoi N, Sarasuk C, Khunnawutmanotham N et al (2009) Phytochemical reinvestigation of labdane-type diterpenes and their cytotoxicity from the rhizomes of Hedychium coronarium. Phytochem Lett 2:184–187

    CAS  Google Scholar 

  • Christian OE, Henry GE, Jacobs H et al (2001) Prenylated benzophenone derivatives from Clusia havetiodes var. stenocarpa. J Nat Prod 64:23–25

    PubMed  CAS  Google Scholar 

  • Chu SS, Feng Hu J, Liu ZL (2011) Composition of essential oil of Chinese Chenopodium ambrosioides and insecticidal activity against maize weevil, Sitophilus zeamais. Pest Manag Sci 67:714–718

    PubMed  CAS  Google Scholar 

  • Chukwujekwu JC, Smith P, Coombes PH et al (2005) Antiplasmodial diterpenoid from the leaves of Hyptis suaveolens. J Ethnopharmacol 102:295–297

    PubMed  CAS  Google Scholar 

  • Cirigliano AM, Veleiro AS, Oberti JC, Burton G (2002) Spiranoid withanolides from Jaborosa odonelliana. J Nat Prod 65:1049–1051

    PubMed  CAS  Google Scholar 

  • Clark DE (2001) Peroxides and peroxide-forming compounds. Chem Health Saf. https://doi.org/10.1016/S1074-9098(01)00247-7

    Article  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV et al (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302

    PubMed  CAS  Google Scholar 

  • Crow WD, Nicholls W, Sterns M (1971) Root inhibitors in Eucalyptus grandis: naturally ocurring derivatives of the 2,3-dioxabiciclo[4.4.0]decane system. Tetrahedron Lett 18:1353–1356

    Google Scholar 

  • Danelutte AP, Lago JH, Young MCM, Kato MJ (2003) Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 64:555–559

    PubMed  CAS  Google Scholar 

  • Dembitsky VM (2008) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43:223–251

    PubMed  CAS  Google Scholar 

  • Dembitsky VM (2015) Astonishing diversity of natural peroxides as potential therapeutic agents. J Mol Genet Med. https://doi.org/10.4172/1747-0862.1000163

    Article  Google Scholar 

  • Ding Y, Liang C, Kim JH et al (2010) Triterpene compounds isolated from Acer mandshuricum and their anti-inflammatory activity. Bioorg Med Chem Lett 20:1528–1531

    PubMed  CAS  Google Scholar 

  • Efange SMN, Brun R, Wittlin S et al (2009) Okundoperoxide, a bicyclic cyclofarnesylsesquiterpene endoperoxide from Scleria striatinux with antiplasmodial activity. J Nat Prod 72:280–283

    PubMed  PubMed Central  CAS  Google Scholar 

  • Escudero J, Perez L, Rabanal RM, Valverde S (1983) Diterpenoids from Salvia oxydon and Salvia lavandulifolia. Phytochemistry 22:585–587

    CAS  Google Scholar 

  • Fernández I, Robert A (2011) Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity. Org Biomol Chem 9:4098–4107

    PubMed  Google Scholar 

  • Fiedor J, Fiedor L, Haeßner R, Scheer H (2005) Cyclic endoperoxides of β-carotene, potential pro-oxidants, as products of chemical quenching of singlet oxygen. Biochim Biophys Acta 1709:1–4

    PubMed  CAS  Google Scholar 

  • Gao JF, Xie JH, Harimaya K et al (1991) The absolute structure and synthesis of wenjine isolated from Curcuma wenyujin. Chem Pharm Bull 39:854–856

    CAS  Google Scholar 

  • Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (part I). Prog Nuclear Magn Reson Spectrosc 56:95–197

    CAS  Google Scholar 

  • Guilet D, Séraphin D, Rondeau D et al (2001) Cytotoxic coumarins from Calophyllum dispar. Phytochemistry 58:571–575

    PubMed  CAS  Google Scholar 

  • Guo H, Yao S, Yang X et al (2018) Oxidatively rearranged cycloartane triterpenoids from the seeds of Pseudolarix amabilis. Nat Prod Res 6419:1–7

    Google Scholar 

  • Guo-Fu C, Zhu-Lian L, Ke C et al (1990) Structure and stereochemistry of pseudolarolide-H, a novel peroxy triterpene dilactone from Pseudolarix kaempferi. Tetrahedron Lett 31:3413–3416

    Google Scholar 

  • Hashidoko Y, Tahara S, Mizutani J (1989) Antimicrobial sesquiterpene from damaged Rosa rugosa leaves. Phytochemistry 28:425–430

    CAS  Google Scholar 

  • Hashidoko Y, Tahara S, Mizutani J (1991) Isolation of four novel carotanoids as possible metabolites of rugosic acid A in Rosa rugosa leaves. Agric Biol Chem 55:1049–1053

    CAS  Google Scholar 

  • Hausen BM, Breuer J, Weglewski J et al (1991) α-Peroxyachifolid and other new sensitizing sesquiterpene lactones from yarrow (Achillea millefolium L., Compositae). Contact Derm 24:274–280

    PubMed  CAS  Google Scholar 

  • He F, Pu JX, Huang SX et al (2010) Schinalactone A, a new cytotoxic triterpenoid from Schisandra sphenanthera. Org Lett 12:1208–1211

    PubMed  CAS  Google Scholar 

  • Henry GE, Jacobs H, Carrington CMS et al (1999) Prenylated benzophenone derivatives from Caribbean Clusia species (Guttiferae). Plukenetiones B–G and xerophenone A. Tetrahedron 55:1581–1596

    CAS  Google Scholar 

  • Herz W, Watanabe K, Kulanthaivel P et al (1985) Cycloartanes from Lindheimera texana. Phytochemistry 24:2645–2654

    CAS  Google Scholar 

  • Hu X, Maimone TJ (2014) Four-step synthesis of the antimalarial cardamom peroxide via an oxygen stitching strategy. J Am Chem Soc 136:5287–5290

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Y, Ren J, Wang L et al (2018) Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components. Phytochemistry 149:12–23

    PubMed  CAS  Google Scholar 

  • Huber H, Fröhlke E (1972) A new spray-reagent for the detection and quantitative estimation of peroxides. Chromatographia 5:256–257

    CAS  Google Scholar 

  • Hwang JS, Lee SA, Hong SS et al (2012) Inhibitory constituents of Nardostachys chinensis on nitric oxide production in RAW 264.7 macrophages. Bioorg Med Chem Lett 22:706–708

    PubMed  CAS  Google Scholar 

  • Iqbal J, Husain A, Gupta A (2006) Photooxidation of acyclovir with thermally generated triplet excited ketones. A comparison with type I and II photosensitizers. Chem Pharm Bull. https://doi.org/10.1248/cpb.54.519

    Article  PubMed  Google Scholar 

  • Ishida Y, Shirota O, Sekita S et al (2010) Polyprenylated benzoylphloroglucinol-type derivatives including novel cage compounds from Hypericum erectum. Chem Pharm Bull 58:336–343

    PubMed  CAS  Google Scholar 

  • Itokawa H, Morita H, Katou I et al (1988) Cytotoxic diterpenes from the rhizomes of Hedychium coronarium. Planta Med 54:311–315

    PubMed  CAS  Google Scholar 

  • Jakupovic J, Baruah RN, Zdero C et al (1986) Further diterpenes from plants of the compositae, subtribe solidagininae. Phytochemistry 25:1873–1881

    CAS  Google Scholar 

  • Jakupovic J, Grenz M, Schmeda-Hirschmann G (1988a) Rhamnofolane derivatives from Jatropha Grossidentata. Phytochemistry 27:2997–2998

    CAS  Google Scholar 

  • Jakupovic J, Schuster A, Bohlmann F, Dillon MO (1988b) Guaianolides and other constituents from Liabum floribundum. Phytochemistry 27:1771–1775

    CAS  Google Scholar 

  • Johnson MA, Croteau R (1984) Biosynthesis of ascaridole: iodide peroxidase-catalyzed synthesis of a monoterpene endoperoxide in soluble extracts of Chenopodium ambrosioides fruit. Arch Biochem Biophys 235:254–266

    PubMed  CAS  Google Scholar 

  • Kamchonwongpaisan S, Nilanonta C, Tarnchompoo B et al (1995) An antimalarial peroxide from Amomum krervanh Pierre. Tetrahedron Lett 36:1821–1824

    CAS  Google Scholar 

  • Kamperdicka C, Phuonga NM, Adam G et al (2001) Guaiane dimers from Xylopia vielana. Phytochemistry 56:335–340

    Google Scholar 

  • Kamperdicka C, Phuonga NM, Adam G et al (2003) Guaiane dimers from Xylopia vielana. Phytochemistry 64:811–816

    Google Scholar 

  • Khamidullina EA, Vereshchagin AL, Medvedeva SA (2005) Structure of a new diterpene alcohol from Pinus sibirica buds. Chem Nat Compd 41:426–428

    CAS  Google Scholar 

  • Kim CS, Subedi L, Kim SY et al (2016) Diterpenes from the trunk of Abies holophylla and their potential neuroprotective and anti-inflammatory activities. J Nat Prod 79:387–394

    PubMed  CAS  Google Scholar 

  • Kiuchi F, Itano Y, Uchiyama N et al (2002) Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod 65:509–512

    PubMed  CAS  Google Scholar 

  • Ko W, Park JS, Kim KW et al (2018) Nardosinone-type sesquiterpenes from the hexane fraction of Nardostachys jatamansi attenuate NF-κB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation 41:1215–1228

    PubMed  CAS  Google Scholar 

  • Kojoma M, Hishida A, Kawahara N et al (2015) Prenylated benzophenones from Triadenum japonicum. J Nat Prod 78:258–264

    PubMed  Google Scholar 

  • Kong LY, Tan RX (2015) Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep 32:1617–1621

    PubMed  CAS  Google Scholar 

  • Krawczyk T, Baj S (2014) Review: Advances in the determination of peroxides by optical and spectroscopic methods. Anal Lett 47:2129–2147

    CAS  Google Scholar 

  • Kwon HC, Choi SU, Lee KR (2000) Cytotoxic peroxides from Artemisia stolonifera. Arch Pharm Res 23:151–154

    PubMed  CAS  Google Scholar 

  • Langenbahn U, Burkhardt G, Becker H (1993) Diterpene malonates and other terpenes from Nardia succulenta and N. scalaris. Phytochemistry 33:1173–1179

    CAS  Google Scholar 

  • Lee KR (1991) Peroxide constituents in the natural product research. Kor J Pharmacogn 22:145–155

    CAS  Google Scholar 

  • Lee TH, Lu CK, Kuo YH et al (2008) Unexpected novel pheophytin peroxides from the leaves of Bidens pilosa. Helv Chim Acta 91:79–84

    CAS  Google Scholar 

  • Lee S, Lin Y, Chen C (2009) Three adducts of butenolide and apigenin glycoside from the leaves of Machilus japonica. J Nat Prod 72:1249–1252

    PubMed  CAS  Google Scholar 

  • Li P, Yamakuni T, Matsunaga K et al (2003) Nardosinone enhances nerve growth factor-induced neurite outgrowth in a mitogen-activated protein kinase- and protein kinase C-dependent manner in PC12D cells. J Pharmacol Sci 93:122–125

    PubMed  CAS  Google Scholar 

  • Li C, Li B, Wang F, Zhang G (2006) A diterpene endoperoxide from Microtoena insuavis (Hance) Prain ex Dunn. J Integr Plant Biol 48:613–616

    CAS  Google Scholar 

  • Li B, Shen Y, Li C et al (2012) Terpenoids from Pinus densata Mast. and their chemotaxonomic significance. Biochem Syst Ecol 44:79–82

    CAS  Google Scholar 

  • Li Q, Luo J, Zhao H et al (2015) Involudispirones A and B: sesterterpenes containing a dispiro ring from Stahlianthus involucratus. Asian J Org Chem 4:1366–1369

    Google Scholar 

  • Li LN, Liu XQ, Zhu DR et al (2019) Officinalins A and B, a pair of C23 terpenoid epimers with a tetracyclic 6/7/5/5 system from Salvia officinalis. Org Chem Front 6:3369–3373

    CAS  Google Scholar 

  • Ling T, Lang WH, Martinez-Montemayor MM, Rivas F (2019) Development of ergosterol peroxide probes for cellular localisation studies. Org Biomol Chem 17(21):5223–5229

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu DZ, Liu JK (2013) Peroxy natural products. Nat Prod Bioprospect 3:161–206

    PubMed Central  Google Scholar 

  • Liu H, He H, Gao S et al (2006) Two new diterpenoids from Callicarpa pedunculata. Helv Chim Acta 89:1017–1022

    CAS  Google Scholar 

  • Liu QF, Chen WL, Tang J et al (2007) Novel bis(bibenzyl) and (propylphenyl)bibenzyl derivatives from Dendrobium nobile. Helv Chim Acta 90:1745–1750

    CAS  Google Scholar 

  • Liu YW, Cheng YB, Liaw CC et al (2012) Bioactive diterpenes from Callicarpa longissima. J Nat Prod 75:689–693

    PubMed  CAS  Google Scholar 

  • Liu J, Yang Y, Li X et al (2013) Cytotoxicity of naturally occurring rhamnofolane diterpenes from Jatropha curcas. Phytochemistry 96:265–272

    PubMed  CAS  Google Scholar 

  • Liu X, Fu J, Yao X-J et al (2018) Phenolic constituents isolated from the twigs of Cinnamomum cassia and their potential neuroprotective effects. J Nat Prod 81:1333–1342

    PubMed  CAS  Google Scholar 

  • Loyola LA, Morales G, Rodriguez B et al (1990a) Mulinic and isomulinic acids. Rearranged diterpenes with a new carbon skeleton from Mulinum crassifolium. Tetrahedron 46:5413–5420

    CAS  Google Scholar 

  • Loyola LA, Morales G, Torre MC et al (1990b) 17-Acetoxymulinic acid, a rearranged diterpenoid from Mulinum crassifolium. Phytochemistry 29:3950–3951

    CAS  Google Scholar 

  • Ma YP, Li N, Gao J et al (2011) A new peroxy-multiflorane triterpene ester from the processed seeds of Trichosanthes kirilowii. Helv Chim Acta 94:1881–1887

    CAS  Google Scholar 

  • Makino B, Kawai M, Iwata Y et al (1995) Physalins possessing an endoperoxy structure from Physalis alkekengi var. francheti. Structural revision of physalin K. Bull Chem Soc Jpn. https://doi.org/10.1246/bcsj.68.219

    Article  Google Scholar 

  • Marco JA, Sanz JF, Falcó E (1990) New oxygenated eudesmanolides from Artemisia herba-alba. Tetrahedron 46:7941–7950

    CAS  Google Scholar 

  • Marco JA, Sanz-cervera JF, Ropero FJ et al (1998) Germacranolides and a monoterpene cyclic from Artemisia fragrans. Phytochemistry 47:1417–1419

    CAS  Google Scholar 

  • Margaros I, Montagnon T, Tofi M et al (2006) The power of singlet oxygen chemistry in biomimetic syntheses. Tetrahedron 62:5308–5317

    CAS  Google Scholar 

  • Marnett LJ (2000) Cyclooxygenase mechanisms. Curr Opin Chem Biol 4:545–552

    PubMed  CAS  Google Scholar 

  • Maslovskaya LA, Savchenko AI, Krenske EH et al (2014a) Croton insularis introduces the seco-casbane class with EBC-329 and the first casbane endoperoxide EBC-324. Chem Commun 50:12315–12317

    CAS  Google Scholar 

  • Maslovskaya LA, Savchenko AI, Pierce CJ et al (2014b) Unprecedented 1,14-seco-crotofolanes from Croton insularis: oxidative cleavage of crotofolin C by a putative Homo-Baeyer–Villiger rearrangement. Chem A Eur J 20:14226–14230

    CAS  Google Scholar 

  • Mathúna DPO, Doskotch RW (1995) Amoenolide k and amoenolide k 19-acetate, two grindelane peroxides from Amphiachyris amoena. Isolation, structure determination, and preparation of amoenolide k from amoenolide a by photochemical oxygenation. J Nat Prod 58:1407–1418

    Google Scholar 

  • Matsuda Y, Bai T, Phippen CB et al (2018) Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nat Commun 9:1–10

    CAS  Google Scholar 

  • Menelaou MA, Macias FA, Weidenhamer JD et al (1995) Sesquiterpenes from Chrysoma pauciflosculosa. Spectrosc Lett 28:1061–1074

    CAS  Google Scholar 

  • Moreira IC, Roque NF, Contini K, Lago JHG (2007) Sesquiterpenos e hidrocarbonetos dos frutos de Xylopia emarginata (Annonaceae). Braz J Pharmacogn 17:55–58

    CAS  Google Scholar 

  • Müller S, Murillo R, Castro V et al (2004) Sesquiterpene lactones from Montanoa hibiscifolia that inhibit the transcription factor NF-κB. J Nat Prod 67:622–630

    PubMed  Google Scholar 

  • Nagashima F, Suzuki M, Takaoka S, Asakawa Y (1999) New acorane- and cuparane-type sesqui- and new labdane- and seco-labdane-type diterpenoids from the Japanese liverwort Jungermannia infusca (Mitt.) Steph. Tetrahedron 55:9117–9132

    CAS  Google Scholar 

  • Najjar F, Gorrichon L, Baltas M et al (2004) Crucial role of the peroxyketal function for antimalarial activity in the G-factor series. Bioorg Med Chem Lett 14:1433–1436

    PubMed  CAS  Google Scholar 

  • Nelson EK (1911) A chemical investigation of the oil of Chenopodium. J Am Chem Soc 33:1404–1412

    CAS  Google Scholar 

  • Ngo KS, Wong WT, Brown GD (1999) Muurolane sesquiterpenes from Illicium tsangii. J Nat Prod 62:549–553

    PubMed  CAS  Google Scholar 

  • Nisa K, Ito T, Kodama T et al (2016) New cytotoxic phloroglucinols, baeckenones D–F, from the leaves of Indonesian Baeckea frutescens. Fitoterapia 109:236–240

    PubMed  CAS  Google Scholar 

  • Nitz S, Kollmannsberger H, Spraul MH et al (1989) Oxygenated derivatives of menthatriene in parsley leaves. Phytochemistry 28:3051–3054

    CAS  Google Scholar 

  • Noori S, Hassan ZM (2014) Tehranolide inhibits cell proliferation via calmodulin inhibition, PDE, and PKA activation. Tumor Biol 35:257–264

    CAS  Google Scholar 

  • Ohtsu H, Tanaka R, In Y et al (2001) Abietane diterpenoids from the cones of Larix kaempferi and their inhibitory effects on Epstein–Barr virus activation. Planta Med 67:55–60

    PubMed  CAS  Google Scholar 

  • Peña AJ, Pacheco-londoño L, Figueroa J et al (2005) Characterization and differentiation of high energy cyclic organic peroxides by GC/FT-IR, GC–MS, FT-IR and Raman microscopy. Proc SPIE 5778:347–358

    Google Scholar 

  • Peña-Quevedo AJ, Laramee JA, Durst HD et al (2011) Cyclic organic peroxides characterization by mass spectrometry and Raman microscopy. IEEE Sens J 11:1053–1060

    Google Scholar 

  • Pérez-Gutiérrez S, Sánchez-Mendoza E, Martínez-González D et al (2012) Kramecyne—a new anti-inflammatory compound isolated from Krameria cytisoides. Molecules 17:2049–2057

    PubMed  PubMed Central  Google Scholar 

  • Ponomarenko LP, Kalinovsky AI, Berdyshev DV et al (2016) Chemical constituents of Ligularia alticola Worosch. leaves and their biological activities. Phytochem Lett 15:46–52

    CAS  Google Scholar 

  • Poornima B, Siva B, Shankaraiah G et al (2015) Novel sesquiterpenes from Schisandra grandiflora: isolation, cytotoxic activity and synthesis of their triazole derivatives using “click” reaction. Eur J Med Chem 92:449–458

    PubMed  CAS  Google Scholar 

  • Qu JB, Zhu RL, Zhang YL et al (2008) ent-Kaurane diterpenoids from the liverwort Jungermannia atrobrunnea. J Nat Prod 71:1418–1422

    PubMed  CAS  Google Scholar 

  • Ramel F, Birtic S, Cuine S et al (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ren J, Qin JJ, Cheng XR et al (2013) Five new sesquiterpene lactones from Inula hupehensis. Arch Pharm Res 36:1319–1325

    PubMed  CAS  Google Scholar 

  • Rücker G, Walter RD, Manns D, Mayer R (1991) Antimalarial activity of some natural peroxides. Planta Med. https://doi.org/10.1055/s-2006-960099

    Article  PubMed  Google Scholar 

  • Rücker G, Manns D, Wilbert S (1993) Peroxide vom Davanon-Typ aus der Eberraute (Artemisia abrotanum) und ihre Darstellung. Arch Pharm (Weinheim) 326:457–460

    Google Scholar 

  • Rücker G, Schenkel EP, Manns D et al (1996) Sesquiterpene peroxides from Senecio selloi and Eupatorium rufescens. Planta Med 62:565–566

    PubMed  Google Scholar 

  • Rustaiyan A, Koussari S (1988) Further sesterterpenes from Salvia hypoleuca. Phytochemistry 27:1767–1769

    CAS  Google Scholar 

  • Saha B, Naskar DB, Misra DR et al (1977) Baccatin, a novel nor-triterpene peroxide isolated from Sapium baccatum ROXB. Tetrahedron Lett 35:3095–3098

    Google Scholar 

  • Saito Y, Hattori M, Iwamoto Y et al (2011) Overlapping chemical and genetic diversity in Ligularia lamarum and Ligularia subspicata. Isolation of ten new eremophilanes and a new seco-bakkane compound. Tetrahedron 67:2220–2231

    CAS  Google Scholar 

  • San Feliciano A, Miguel del Corral JM, Gordaliza M, Castro MA (1991) Two diterpenoids from leaves of Juniperus sabina. Phytochemistry 30:695–697

    CAS  Google Scholar 

  • Schenkel EP, Rücker G, Manns D et al (2002) Screening of Brazilian plants for the presence of peroxides. Rev Bras Cienc Farm 38:191–196

    CAS  Google Scholar 

  • Schuller WH, Lawrence RV (1961) Air oxidation of resin acids. III. The photosensitized oxidation of neoabietic acid and the configurations of the pine gum resin acids. J Am Chem Soc 83:2563–2570

    CAS  Google Scholar 

  • Sherma J, Fried B (2003) Handbook of thin-layer chromatography. CRC Press, Boca Raton. https://doi.org/10.1201/9780203912430

    Book  Google Scholar 

  • Shi C, Li H, Yang Y et al (2015) Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediat Inflamm 2015:1–8

    Google Scholar 

  • Silveira N, Saar J, Santos ADC et al (2016) A new alkamide with an endoperoxide structure from Acmella ciliata (Asteraceae) and its in vitro antiplasmodial activity. Molecules 21:1–10

    Google Scholar 

  • Smith LL, Hill FL (1972) Detection of sterol hydroperoxides on thin-layer chromatoplates by means of the Wurster dyes. J Chromatogr 66:101–109

    PubMed  CAS  Google Scholar 

  • Soetaert SS, Van Neste CM, Vandewoestyne ML et al (2013) Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC Plant Biol 13:220

    PubMed  PubMed Central  Google Scholar 

  • Steffan N, Grundmann A, Afiyatullov S et al (2009) FtmOx1, a non-heme Fe(II) and α-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus. Org Biomol Chem 7:4082–4087

    PubMed  CAS  Google Scholar 

  • Sun JL, Jiang YJ, Ding WJ et al (2019) Physalinol A, a 1, 10-seco-physalin with an epidioxy from Physalis alkekengi L. var. franchetii (Mast.) Makino. Tetrahedron Lett 60:1330–1332

    CAS  Google Scholar 

  • Sutthivaiyakit S, Mongkolvisut W, Ponsitipiboon P et al (2003) A novel 8,9-seco-rhamnofolane and a new rhamnofolane endoperoxide from Jatropha integerrima roots. Tetrahedron Lett 44:3637–3640

    CAS  Google Scholar 

  • Sutthivaiyakit S, Mongkolvisut W, Prabpai S, Kongsaeree P (2009) Diterpenes, sesquiterpenes, and a sesquiterpene-coumarin conjugate from Jatropha integerrima. J Nat Prod 72:2024–2027

    PubMed  CAS  Google Scholar 

  • Sy LK, Brown D (1997) Oxygenated bisabolanes from Alpinia densibracteata. Phytochemistry 45:537–544

    CAS  Google Scholar 

  • Sy LK, Brown GD (1998a) A novel endoperoxide and related sesquiterpenes from Artemisia annua which are possibly derived from allylic hydroperoxides. Tetrahedron 54:4345–4356

    CAS  Google Scholar 

  • Sy LK, Brown GD (1998b) Abietane diterpenes from Illicium angustisepalum. J Nat Prod 61:907–912

    PubMed  CAS  Google Scholar 

  • Sy LK, Brown GD (2002) The mechanism of the spontaneous autoxidation of dihydroartemisinic acid. Tetrahedron 58:897–908

    CAS  Google Scholar 

  • Szpilman AM, Korshin EE, Rozenberg H et al (2005) Total syntheses of yingzhaosu A and of its C (14)-epimer including the first evaluation of their antimalarial and cytotoxic activities. J Org Chem 70:3618–3632

    PubMed  CAS  Google Scholar 

  • Takaya Y, Kurumada KI, Takeuji Y et al (1998) Novel antimalarial guaiane-type sesquiterpenoids from Nardostachys chinensis roots. Tetrahedron Lett 39:1361–1364

    CAS  Google Scholar 

  • Takaya Y, Takeuji Y, Akasaka M et al (2000) Novel guaiane endoperoxides, nardoguaianone A–D, from Nardostachys chinensis roots and their antinociceptive and antimalarial activities. Tetrahedron 56:7673–7678

    CAS  Google Scholar 

  • Tan J, Qiu Y, Tan X, Tan C (2011) Three new peroxy triterpene lactones from Pseudolarix kaempferi. Helv Chim Acta 94:1697–1702

    CAS  Google Scholar 

  • Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y (1995) Antimalarial sesquiterpenes from tubers of Cyperus rotundus: structure of 10,12-peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry 40:125–128

    PubMed  CAS  Google Scholar 

  • Tian GH, Liu CF, Lai PH et al (2010) Configuration and conformation of taibaihenryiin T isolated from Phlomis umbrosa. Chem Nat Compd 46:219–221

    CAS  Google Scholar 

  • Tiew P, Takayama H, Kitajima M et al (2003) A novel neolignan, mansoxetane, and two new sesquiterpenes, mansonones R and S, from Mansonia gagei. Tetrahedron Lett 44:6759–6761

    CAS  Google Scholar 

  • Ting CW, Hwang TL, Chen IS et al (2014) Garcimultiflorone G, a novel benzoylphloroglucinol derivative from Garcinia multiflora with inhibitory activity on neutrophil pro-inflammatory responses. Chem Biodivers 11:819–824

    PubMed  CAS  Google Scholar 

  • Tokuyasu T, Kunikawa S, Abe M et al (2003) Synthesis of antimalarial yingzhaosu A analogues by the peroxidation of dienes with Co(II)/O2/Et3SiH. J Org Chem 68:7361–7367

    PubMed  CAS  Google Scholar 

  • Torres MCM, Assunção JC, Santiago GMP et al (2008) Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus. Chem Biodivers 5:2724–2728

    PubMed  CAS  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    PubMed  Google Scholar 

  • Triemer S, Gilmore K, Vu GT et al (2018) Literally green chemical synthesis of artemisinin from plant extracts. Angew Chem Int Ed 57:5525–5528

    CAS  Google Scholar 

  • Tsui W, Brown GD (1996) Unusual metabolites of Baeckea frutescens. Tetrahedron 52:9735–9742

    CAS  Google Scholar 

  • Varela K, Arman HD, Yoshimoto FK (2020) Synthesis of [3,3-2H2] dihydroartemisinic acid to measure the rate of nonenzymatic conversion of dihydroartemisinic acid to artemisinin. J Nat Prod 83:66–78

    PubMed  CAS  Google Scholar 

  • Wang L, He HP, Di YT et al (2012) Catharoseumine, a new monoterpenoid indole alkaloid possessing a peroxy bridge from Catharanthus roseus. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2012.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Li RJ, Liu RH et al (2016) Sarglaperoxides A and B, sesquiterpene-normonoterpene conjugates with a peroxide bridge from the seeds of Sarcandra glabra. Org Lett 18:832–835

    PubMed  CAS  Google Scholar 

  • Wang ZQ, Li XY, Hu DB, Long CL (2018) Cytotoxic garcimultiflorones K–Q, lavandulyl benzophenones from Garcinia multiflora branches. Phytochemistry 152:82–90

    PubMed  CAS  Google Scholar 

  • Wen R, Lv H, Jiang Y et al (2018) Anti-inflammatory isoflavones and isoflavanones from the roots of Pongamia pinnata (L.) Pierre. Bioorg Med Chem Lett 28:1050–1055

    PubMed  CAS  Google Scholar 

  • Wu CL, Jong JR (2001) A cyclic peroxide of clerodenoic acid from the Taiwanese liverwort Schistochila acuminata. J Asian Nat Prod Res 3:241–246

    PubMed  CAS  Google Scholar 

  • Wu QX, Liu X, Shi YP (2007) Chemical components from Gentiana aristata. Chem Biodivers 4:175–182

    PubMed  CAS  Google Scholar 

  • Wu X, Wang L, Wang GC et al (2012) New steroidal saponins and sterol glycosides from Paris polyphylla var. yunnanensis. Planta Med 78:1667–1675

    PubMed  CAS  Google Scholar 

  • Wu HH, Chen YP, Ying SS et al (2015) Dinardokanshones A and B, two unique sesquiterpene dimers from the roots and rhizomes of Nardostachys chinensis. Tetrahedron Lett 56:5851–5854

    CAS  Google Scholar 

  • Xi FM, Liu YB, Qu J et al (2017) Bioactive sesquiterpenoids from the roots of Artabotrys hexapetalus. Tetrahedron 73:571–582

    CAS  Google Scholar 

  • Xiao ZY, Zeng YH, Mu Q et al (2010) Prenylated benzophenone peroxide derivatives from Hypericum sampsonii. Chem Biodivers 7:953–958

    PubMed  CAS  Google Scholar 

  • Xu J, Sun Y, Wang M et al (2015) Bioactive diterpenoids from the leaves of Callicarpa macrophylla. J Nat Prod 78:1563–1569

    PubMed  CAS  Google Scholar 

  • Xu J, Li S, Sun X et al (2016) Diterpenoids from Callicarpa kwangtungensis and their NO inhibitory effects. Fitoterapia 113:151–157

    PubMed  CAS  Google Scholar 

  • Yang J, Pu J, Wen J et al (2010) Cytotoxic triterpene dilactones from the stems of Kadsura ananosma. J Nat Prod 73:12–16

    PubMed  CAS  Google Scholar 

  • Yang YF, Liu JQ, Li XY et al (2013) New terpenoids from the roots of Jatropha curcas. Chin Sci Bull 58:1115–1119

    CAS  Google Scholar 

  • Yang D, Cheng ZQ, Yang L et al (2018) Seco-dendrobine-type alkaloids and bioactive phenolics from Dendrobium findlayanum. J Nat Prod 81:227–235

    PubMed  CAS  Google Scholar 

  • Yin S, Wang XN, Fan CQ et al (2007) The first limonoid peroxide in the meliaceae family: Walsuronoid A from Walsura robusta. Org Lett 9:2353–2356

    PubMed  CAS  Google Scholar 

  • Yu DQ, Chen RY, Huang LJ et al (2008) The structure and absolute configuration of Shuangkangsu: a novel natural cyclic peroxide from Lonicera japonica (Thunb.). J Asian Nat Prod Res 10:851–856

    PubMed  CAS  Google Scholar 

  • Yu JQ, Lin MB, Deng AJ et al (2017) 14,15-Secopregnane-type C21-steriosides from the roots of Cynanchum stauntonii. Phytochemistry 138:152–162

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhou WS, Xu XX (1988) A new sesquiterpene peroxide (yingzhaosu C) and sesquiterpenol (yingzhaosu D) from Artabotrys unciatus (L.) Meer. J Chem Soc Chem Commun 8:523–524

    Google Scholar 

  • Zhang YS, Ye HC, Li GF (2003) Effect of horseradish peroxidase on the biosynthesis of artemisinin in Artemisia annua in vitro. Chin J Appl Environ Biol 9:616–618

    CAS  Google Scholar 

  • Zhang LB, Lv JL, Liu JW (2016) Phthalide derivatives with anticoagulation activities from Angelica sinensis. J Nat Prod 79:1857–1861

    PubMed  CAS  Google Scholar 

  • Zhang YL, Zhou XW, Wang XB et al (2017) Xylopiana A, a dimeric guaiane with a case-shaped core from Xylopia vielana: structural elucidation and biomimetic conversion. Org Lett 19:3013–3016

    PubMed  CAS  Google Scholar 

  • Zhao Q, Gao JJ, Qin XJ et al (2018) Hedychins A and B, 6, 7-dinorlabdane diterpenoids with a peroxide bridge from Hedychium forrestii. Org Lett 20:704–707

    PubMed  CAS  Google Scholar 

  • Zhou T, Zhang H, Chiu P (2004) New triterpene peroxides from Pseudolarix kaempferi. Tetrahedron 60:4931–4936

    CAS  Google Scholar 

  • Zhu H, Chen C, Tong Q et al (2015) Hyperisampsins H–M, cytotoxic polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii. Sci Rep 5:1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica M. Rivas-Galindo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamez-Fernández, J.F., Melchor-Martínez, E.M., Ibarra-Rivera, T.R. et al. Plant-derived endoperoxides: structure, occurrence, and bioactivity. Phytochem Rev 19, 827–864 (2020). https://doi.org/10.1007/s11101-020-09687-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09687-4

Keywords

Navigation