Skip to main content

Advertisement

Log in

Respiratory Control by Phox2b-expressing Neurons in a Locus Coeruleus–preBötzinger Complex Circuit

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The locus coeruleus (LC) has been implicated in the control of breathing. Congenital central hypoventilation syndrome results from mutation of the paired-like homeobox 2b (Phox2b) gene that is expressed in LC neurons. The present study was designed to address whether stimulation of Phox2b-expressing LC (Phox2bLC) neurons affects breathing and to reveal the putative circuit mechanism. A Cre-dependent viral vector encoding a Gq-coupled human M3 muscarinic receptor (hM3Dq) was delivered into the LC of Phox2b-Cre mice. The hM3Dq-transduced neurons were pharmacologically activated while respiratory function was measured by plethysmography. We demonstrated that selective stimulation of Phox2bLC neurons significantly increased basal ventilation in conscious mice. Genetic ablation of these neurons markedly impaired hypercapnic ventilatory responses. Moreover, stimulation of Phox2bLC neurons enhanced the activity of preBötzinger complex neurons. Finally, axons of Phox2bLC neurons projected to the preBötzinger complex. Collectively, Phox2bLC neurons contribute to the control of breathing most likely via an LC–preBötzinger complex circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zaidi S, Gandhi J, Vatsia S, Smith NL, Khan SA. Congenital central hypoventilation syndrome: An overview of etiopathogenesis, associated pathologies, clinical presentation, and management. Auton Neurosci 2018, 210: 1–9.

    PubMed  Google Scholar 

  2. Moreira TS, Takakura AC, Czeisler C, Otero JJ. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J Neurophysiol 2016, 116: 742–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Guyenet PG, Stornetta RL, Bayliss DA. Central respiratory chemoreception. J Comp Neurol 2010, 518: 3883–3906.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramanantsoa N, Gallego J. Congenital central hypoventilation syndrome. Respir Physiol Neurobiol 2013, 189: 272–279.

    CAS  PubMed  Google Scholar 

  5. Hernandez-Miranda LR, Ibrahim DM, Ruffault PL, Larrosa M, Balueva K, Muller T, et al. Mutation in LBX1/Lbx1 precludes transcription factor cooperativity and causes congenital hypoventilation in humans and mice. Proc Natl Acad Sci U S A 2018, 115: 13021–13026.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999, 399: 366–370.

    CAS  PubMed  Google Scholar 

  7. Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, et al. Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 2009, 29: 5806–5819.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takakura AC, Moreira TS, Stornetta RL, West GH, Gwilt JM, Guyenet PG. Selective lesion of retrotrapezoid Phox2b-expressing neurons raises the apnoeic threshold in rats. J Physiol 2008, 586: 2975–2991.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Shi Y, Shu S, Guyenet PG, Bayliss DA. Phox2b-expressing retrotrapezoid neurons are intrinsically responsive to H+ and CO2. J Neurosci 2013, 33: 7756–7761.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu C, Shi L, Wei Z, Yu H, Hao Y, Tian Y, et al. Activation of Phox2b-expressing neurons in the nucleus tractus solitarii drives breathing in mice. J Neurosci 2019, 39: 2837–2846.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu C, Xue J, Wang R, Chen J, Ma L, Liu Y, et al. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. J Physiol 2017, 595: 4973–4989.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 2010, 13: 1526–1533.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yackle K, Schwarz LA, Kam K, Sorokin JM, Huguenard JR, Feldman JL, et al. Breathing control center neurons that promote arousal in mice. Science 2017, 355: 1411–1415.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Feng X, Zhou Z, Zhang H, Shi Q, Lei Z, et al. Stress accelerates defensive responses to looming in mice and involves a locus coeruleus-superior colliculus projection. Curr Biol 2018, 28: 859–871.e855.

    Google Scholar 

  15. Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch 2008, 455: 1119–1128.

    CAS  PubMed  Google Scholar 

  16. Li A, Nattie E. Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol 2006, 570: 385–396.

    CAS  PubMed  Google Scholar 

  17. Nobuta H, Cilio MR, Danhaive O, Tsai HH, Tupal S, Chang SM, et al. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol 2015, 130: 171–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Harper RM, Kumar R, Macey PM, Harper RK, Ogren JA. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome. Front Neurosci 2015, 9: 415.

    PubMed  PubMed Central  Google Scholar 

  19. Paxinos G, Watson G. The Mouse Brain in Stereotaxic Coordinates. 2th ed. San Diego: Academic Press, 2001:124–129.

    Google Scholar 

  20. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 2003, 42: 33–84.

    PubMed  Google Scholar 

  21. Lazarenko RM, Milner TA, Depuy SD, Stornetta RL, West GH, Kievits JA, et al. Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2b-EGFP transgenic mice. J Comp Neurol 2009, 517: 69–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 2017, 357: 503–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gargaglioni LH, Hartzler LK, Putnam RW. The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol 2010, 173: 264–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Z, Wang L, Gao W, Hu F, Zhang J, Ren Y, et al. A central catecholaminergic circuit controls blood glucose levels during stress. Neuron 2017, 95: 138–152 e5.

    Google Scholar 

  25. Del Negro CA, Funk GD, Feldman JL. Breathing matters. Nat Rev Neurosci 2018, 19: 351–367.

    PubMed  PubMed Central  Google Scholar 

  26. Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol 2014, 4: 1511–1562.

    PubMed  PubMed Central  Google Scholar 

  27. Feldman JL, Del Negro CA, Gray PA. Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol 2013, 75: 423–452.

    CAS  PubMed  Google Scholar 

  28. Zhao F, Jiang HF, Zeng WB, Shu Y, Luo MH, Duan S. Anterograde trans-synaptic tagging mediated by adeno-associated virus. Neurosci Bull 2017, 33: 348–350.

    PubMed  PubMed Central  Google Scholar 

  29. Fan Y, Chen P, Raza MU, Szebeni A, Szebeni K, Ordway GA, et al. Altered expression of Phox2 transcription factors in the locus coeruleus in major depressive disorder mimicked by chronic stress and corticosterone treatment in vivo and in vitro. Neuroscience 2018, 393: 123–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kang BJ, Chang DA, Mackay DD, West GH, Moreira TS, Takakura AC, et al. Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 2007, 503: 627–641.

    CAS  PubMed  Google Scholar 

  31. Fan Y, Huang J, Duffourc M, Kao RL, Ordway GA, Huang R, et al. Transcription factor Phox2 upregulates expression of norepinephrine transporter and dopamine beta-hydroxylase in adult rat brains. Neuroscience 2011, 192: 37–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cregg JM, Chu KA, Dick TE, Landmesser LT, Silver J. Phasic inhibition as a mechanism for generation of rapid respiratory rhythms. Proc Natl Acad Sci U S A 2017, 114: 12815–12820.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mead J. The control of respiratory frequency. Ann N Y Acad Sci 1963, 109: 724–729.

    CAS  PubMed  Google Scholar 

  34. Nicolo A, Girardi M, Sacchetti M. Control of the depth and rate of breathing: metabolic vs. non-metabolic inputs. J Physiol 2017, 595: 6363–6364.

  35. Tipton MJ, Harper A, Paton JFR, Costello JT. The human ventilatory response to stress: rate or depth? J Physiol 2017, 595: 5729–5752.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guyenet PG, Bayliss DA. Neural control of breathing and CO2 homeostasis. Neuron 2015, 87: 946–961.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Haxhiu MA, Yung K, Erokwu B, Cherniack NS. CO2-induced c-fos expression in the CNS catecholaminergic neurons. Respir Physiol 1996, 105: 35–45.

    CAS  PubMed  Google Scholar 

  38. Kumar NN, Velic A, Soliz J, Shi Y, Li K, Wang S, et al. PHYSIOLOGY. Regulation of breathing by CO2 requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science 2015, 348: 1255–1260.

  39. Imber AN, Patrone LGA, Li KY, Gargaglioni LH, Putnam RW. The role of Ca2+ and BK channels of locus coeruleus (LC) neurons as a brake to the CO2 chemosensitivity response of rats. Neuroscience 2018, 381: 59–78.

    CAS  PubMed  Google Scholar 

  40. Li KY, Putnam RW. Transient outwardly rectifying A currents are involved in the firing rate response to altered CO2 in chemosensitive locus coeruleus neurons from neonatal rats. Am J Physiol Regul Integr Comp Physiol 2013, 305: R780–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Imber AN, Putnam RW. Postnatal development and activation of L-type Ca2+ currents in locus ceruleus neurons: implications for a role for Ca2+ in central chemosensitivity. J Appl Physiol (1985) 2012, 112: 1715–1726.

    Google Scholar 

  42. He C, Hu Z. Homeostasis of synapses: Expansion during wakefulness, contraction during sleep. Neurosci Bull 2017, 33: 359–360.

    PubMed  PubMed Central  Google Scholar 

  43. Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S, Krasnow MA, et al. The peptidergic control circuit for sighing. Nature 2016, 530: 293–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopes LT, Patrone LG, Li KY, Imber AN, Graham CD, Gargaglioni LH, et al. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats. Neuroscience 2016, 324: 446–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Arima Y, Yokota S, Fujitani M. Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci Rep 2019, 9: 2830.

    PubMed  PubMed Central  Google Scholar 

  46. Uribe-Marino A, Angelica Castiblanco-Urbina M, Luciano Falconi-Sobrinho L, Dos Anjos-Garcia T, de Oliveira RC, Mendes-Gomes J, et al. The alpha- and beta-noradrenergic receptors blockade in the dorsal raphe nucleus impairs the panic-like response elaborated by medial hypothalamus neurons. Brain Res 2019: 146468.

  47. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1981, 1: 876–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 2005, 28: 403–450.

    CAS  PubMed  Google Scholar 

  49. Leibold NK, van den Hove DL, Viechtbauer W, Buchanan GF, Goossens L, Lange I, et al. CO2 exposure as translational cross-species experimental model for panic. Transl Psychiatry 2016, 6: e885.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31971058 and 31571174), and the Youth Fund for Scientific and Technological Research in Higher Education Institutions of Hebei Province (QN2019019) and the Youth Science and Technology Talent Support Program of Natural Science in Hebei Medical University (CYQD201907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Wang.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Fu, C., Yu, H. et al. Respiratory Control by Phox2b-expressing Neurons in a Locus Coeruleus–preBötzinger Complex Circuit. Neurosci. Bull. 37, 31–44 (2021). https://doi.org/10.1007/s12264-020-00519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00519-1

Keywords

Navigation