Skip to main content
Log in

Optimization of the Energy Conversion Efficiency by Bending Deflection Piezoelectric Cantilever Beams

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In the field of piezoelectric energy harvesting, a cantilever is widely used in a piezoelectric energy harvester (PEH) because it easily deforms under various forces and, generally, the output of the cantilever increases proportionally with the deformation. Naturally, many previous studies focused on how to obtain a higher PEH output. However, the power of the input source is limited, so the efficiency of the PEH must be maximized. In this study, based on the amount of input energy, the existence of an optimal efficiency of energy conversion in the PEH was researched. A plate-type PEH was first installed as the cantilever, and various masses were suspended from the free end of the PEH by using a thread. Next, the thread was cut while the PEH was in a bending state. Immediately, the PEH began vibrating with the input energy being the potential energy of the bent PEH, and the output was obtained. A maximum efficiency of 15.58% was determined in three ways: via the output electrical energy (0.46 mJ), the input potential energy (2.94 mJ), and the deflection value (at a free end position of 3.75 mm). Finally, the existence of the optimal efficiency based on the amount of input energy was found in this PEH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Fang et al., Microelectron. J. 37, 1280 (2006).

    Google Scholar 

  2. W. J. Choi et al., J. Electroceramics 17, 543 (2006).

    Google Scholar 

  3. S. Kim, W. W. Clarkand Q. M. Wang, J. Intell. Mater. Syst. Struct. 16, 847 (2005).

    Google Scholar 

  4. L. Mateu and F. Moll, J. Intell. Mater. Syst. Struct. 16, 835 (2005).

    Google Scholar 

  5. C. J. Rupp, A. Evgrafov, K. Mauteand M. L. Dunn, J. Intell. Mater. Syst. Struct. 20, 1923 (2009).

    Google Scholar 

  6. Y. K. Ramadass and A. P. Chandrakasan, IEEE J. Solid-State Circuits 45, 189 (2010).

    ADS  Google Scholar 

  7. G. K. Ottman, H. F. Hofmann, A. C. Bhattand G. A. Lesieutre, IEEE Trans. Power Electron. 17, 669 (2002).

    ADS  Google Scholar 

  8. X. Gao, W. H. Shihand W. Y. Shih, IEEE Trans. Ind. Electron. 60, 1116 (2013).

    Google Scholar 

  9. D. Guyomar, A. Badel, E. Lefeuvreand C. Richard, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 584 (2005).

    Google Scholar 

  10. M. Ferrari, V. Ferrari, D. Marioliand A. Taroni, IEEE Trans. Instrum. Meas. 55, 2096 (2006).

    Google Scholar 

  11. E. Lefeuvre, D. Audigier, C. Richardand D. Guyomar, IEEE Trans. Power Electron. 22, 2018 (2007).

    ADS  Google Scholar 

  12. A. Erturk and D. J. Inman, Smart Mater. Struct. 18, 025009 (2009).

    ADS  Google Scholar 

  13. J. H. Ahn et al., Sens. Actuators A 277, 124 (2018).

    Google Scholar 

  14. I. Izadgoshasb et al., Energy Convers. Manag. 161, 66 (2018).

    Google Scholar 

  15. W. Wang, J. Cao, C. R. Bowenand J. Lin, Energy 118, 221 (2017).

    Google Scholar 

  16. B. Bao, W. Chenand Q. Wang, Energy 116261 (2019).

  17. J. H. Hyun, in Proceedings of IECON2018, 44th Annual Conference of the IEEE Industrial Electronics Society (Washington, USA, October 21–23, 2018), p. 4219.

    Google Scholar 

  18. J. Y. Cho et al., Appl. Energy 254, 113710 (2019).

    Google Scholar 

  19. J. Y. Cho et al., Sens. Actuators A 280, 340 (2018).

    Google Scholar 

  20. C. I. Kim et al., Appl. Phys. Express 5, 037101 (2012).

    ADS  Google Scholar 

  21. D. Kim et al., RSC Adv. 3, 3194 (2013).

    Google Scholar 

  22. H. Kim, S. Priya, H. Stephanouand K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007).

    Google Scholar 

  23. J. B. Penella and M. P. Vidal, J. Intell. Mater. Syst. Struct. 20, 597 (2009).

    Google Scholar 

  24. N. Kong, D. S. Ha, A. Erturkand D. J. Inman, J. Intell. Mater. Syst. Struct. 21, 1293 (2010).

    Google Scholar 

  25. G. A. Lesieutre, G. K. Ottmanand H. F. Hofmann, J. Sound Vib. 269, 991 (2004).

    ADS  Google Scholar 

  26. Z. Xie et al., Smart Mater. Struct. 28, 085027 (2019).

    ADS  Google Scholar 

  27. H. J. Jung, S. Lee, S. W. Jeongand H. H. Yoo, Smart Mater. Struct. 27, 114006 (2018).

    ADS  Google Scholar 

  28. Y. Liao and J. Liang, Smart Mater. Struct. 27, 075053 (2018).

    ADS  Google Scholar 

  29. M. Umeda, K. Nakamuraand S. Ueha, Jpn. J. Appl. Phys. 35, 3267 (1996).

    ADS  Google Scholar 

  30. M. Garcia-Rodriguez et al., Phys. Procedia 3, 1025 (2010).

    ADS  Google Scholar 

  31. Y. C. Shu and I. C. Lien, J. Micromech. Microeng. 16, 2429 (2006).

    ADS  Google Scholar 

  32. L. Gu, Microelectron. J. 42, 277 (2011).

    Google Scholar 

Download references

Acknowledgments

This research was supported by the program for fostering next-generation researchers in engineering of the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (No. 2017H1D8A2032495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Sung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, C.H., Hwang, W., Cho, J.Y. et al. Optimization of the Energy Conversion Efficiency by Bending Deflection Piezoelectric Cantilever Beams. J. Korean Phys. Soc. 76, 948–953 (2020). https://doi.org/10.3938/jkps.76.948

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.948

PACS numbers

Keywords

Navigation