Skip to main content
Log in

Estimate of the 225Ac Radioactive Isotope Distribution by Means of DOI Compton Imaging in Targeted Alpha Radiotherapy: A Monte Carlo Simulation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

For successful targeted alpha radiotherapy (TAT), verifying the accurate position and distribution of a targeted radiotherapeutic agent in a patient or phantom is important. This paper, describes our investigation of depth-of-interaction (DOI) Compton imaging for the two γ-rays emitted during TAT with the 225Ac radioactive isotope. We optimized the design parameters of the DOI Compton camera, for example, the inter-detector distance, based on the figure of merit (FOM). The performance of DOI Compton imaging for TAT was improved because Doppler broadening and the energy uncertainty are inversely proportional to the radiation energy and the position uncertainty of the depth information is decreased. After the contrast phantom and the resolution phantom had been designed, two reconstruction algorithms, the filtered back-projection (FBP) algorithm and the maximum-likelihood expectation maximization (MLEM) algorithm, were applied to each reconstructed phantom image, and the qualities of the reconstructed images for the two γ-rays (218 keV and 440 keV) were compared. In the quantitative evaluation of the reconstructed images, the MLEM reconstruction algorithm performed better than the FBP algorithm. Based on Monte Carlo simulation studies, the DOI Compton images of the 225Ac radioactive isotope emitting two γ-rays demonstrated the capability of imaging a targeted radiotherapeutic agent in TAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Couturier et al., Eur. J. Nucl. Med. Mol. Imaging 32, 601 (2005).

    Article  Google Scholar 

  2. D. Mulford, D. Scheinberg and J. Jurcic, J. Nucl. Med. 46, 199S (2005).

    Google Scholar 

  3. Y. S. Kim and M. W. Brechbiel, Tumour Biol. 33, 573 (2012).

    Article  Google Scholar 

  4. K. E. Baidoo, K. Yong and M. W. Brechbiel, Clin. Cancer Res. 19, 530 (2013).

    Article  Google Scholar 

  5. M. Miederer, D. A. Scheinberg and M. R. McDevitt, Adv. Drug Deliv. Rev. 60, 1371 (2008).

    Article  Google Scholar 

  6. M. Essler et al., Eur. J. Nucl. Med. Mol. Imaging 39, 602 (2012).

    Article  Google Scholar 

  7. R. M. de Kruijff, H. T. Wolterbeek and A. G. Denkova, Pharmaceuticals 8, 321 (2015).

    Article  Google Scholar 

  8. C. Kratochwil et al., J. Nucl. Med. 57, 1941 (2016).

    Article  Google Scholar 

  9. A. K. H. Robertson et al., Phys. Med. Biol. 62, 4406 (2017).

    Article  Google Scholar 

  10. J. D. Swart et al., J. Nucl. Med. 57, 486 (2016).

    Article  Google Scholar 

  11. J. R. Crawford et al., Phys. Med. Biol. 63, 045025 (2018).

    Article  Google Scholar 

  12. L. Han, W. L. Rogers, S. S. Huh and N. Clinthorne, Phys. Med. Biol. 53, 7029 (2008).

    Article  Google Scholar 

  13. M. Singh and D. Doria, Med. Phys. 10, 428 (1983).

    Article  Google Scholar 

  14. Y. F. Yang et al., IEEE Trans. Nucl. Sci. 48, 656 (2001).

    Article  ADS  Google Scholar 

  15. M-H. Richard et al., IEEE Trans. Nucl. Sci. 58, 87 (2011).

    Article  ADS  Google Scholar 

  16. M. McCleskey et al., Nucl. Instrum. Meth. A 785, 163 (2015).

    Article  ADS  Google Scholar 

  17. T. Lee, H. Lee and W. Lee, Nucl. Instrum. Meth. A 798, 135 (2015).

    Article  ADS  Google Scholar 

  18. C. Gong et al., Appl. Radiat. Isot. 124, 62 (2017).

    Article  Google Scholar 

  19. A. Kishimoto et al., Sci. Rep. 7, 2110 (2017.)

    Article  ADS  Google Scholar 

  20. A. Koyama et al., Nucl. Instrum. Meth. A 845, 660 (2017).

    Article  ADS  Google Scholar 

  21. N. Conka Nurdan, K. Nurdan, A. B. Brill and A. H. Walenta, J. Instrum. 110, C07018 (2015).

    Article  Google Scholar 

  22. N. Yuto et al., Appl. Radiat. Isot. 139, 238 (2018).

    Article  Google Scholar 

  23. E. Yoshida et al., Nucl. Instrum. Meth. A 723, 83 (2013).

    Article  ADS  Google Scholar 

  24. A. Kishimoto et al., IEEE Trans. Nucl. Sci. 60, 38 (2013).

    Article  ADS  Google Scholar 

  25. J. Kataoka et al., Nucl. Instrum. Meth. A 732, 403 (2013).

    Article  ADS  Google Scholar 

  26. L. C. Parra, IEEE Trans. Nucl. Sci. 47, 1543 (2000).

    Article  ADS  Google Scholar 

  27. J. Sempau, J. M. Fernández-Varea, E. Acosta and F. Salvat, Nucl. Instrum. Meth. B 207, 107 (2003).

    Article  ADS  Google Scholar 

  28. H. Seo et al., Nucl. Instrum. Meth. A 591, 80 (2008).

    Article  ADS  Google Scholar 

  29. T. Lee, H. Lee, Y. Kim and W. Lee, J. Korean Phys. Soc. 71, 70 (2017).

    Article  ADS  Google Scholar 

  30. S. J. Wilderman, N. H. Clinthorne, J. A. Fessler and W. L. Rogers, Proc. IEEE Nucl. Sci. Symp. Conf. Rec. 3, 1716 (1998).

    Google Scholar 

  31. K. Lange and R. Carson, J. Comput. Assist. Tomogr. 8, 306 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taewoong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, C., Jo, S., Cho, Y. et al. Estimate of the 225Ac Radioactive Isotope Distribution by Means of DOI Compton Imaging in Targeted Alpha Radiotherapy: A Monte Carlo Simulation. J. Korean Phys. Soc. 76, 954–960 (2020). https://doi.org/10.3938/jkps.76.954

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.954

PACS numbers

Keywords

Navigation