Skip to main content

Advertisement

Log in

Swarming in Bacteria: A Tale of Plasticity in Motility Behavior

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

One of the most fascinating sights in nature is to witness certain insects, birds, and fish move together in a very coordinated and precise fashion for food search, to avoid predation and for migration. The collective movement is called swarming. In 1885, Gustav Hauser, a German pathologist discovered collective movement in a bacterium he later named Proteus mirabilis (Armbruster and Mobley in, Nat Rev Microbiol 30: 186–194, 2013). It was not until 1972 when this mode of bacterial movement was characterized and classified by Henrichsen (Bacteriol Rev 36: 478–503, 1972). Several bacteria are now known to exhibit swarming. Here we describe the how and why of swarming with a focus on plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

References

  1. Armbruster CE, Mobley HLT (2013) Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 30:186–194

    Google Scholar 

  2. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Re. 36:478–503

    CAS  Google Scholar 

  3. Belas R, Schneider R, Melch M (1998) Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol 180:6126–6139

    CAS  Google Scholar 

  4. Kollaran AM et al (2019) Context-specific requirement of forty-four two-component loci in Pseudomonas aeruginosa swarming. iScience 13:305–317

    CAS  Google Scholar 

  5. Caiazza NC, Shanks RMQ, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    CAS  Google Scholar 

  6. Kotian B, Abdulla A, Hithysini K, Harkar S, Joge S, Mishra A, Singh V, Varma MM (2020) Active modulation of surfactant-driven flow instabilitiesby swarming bacteria. Phys Rev E 101(1):012407

    CAS  Google Scholar 

  7. Boyle KE, Van Ditmarsch D, Deforet M, Xavier JB (2015) Integration of metabolic and quorum sensing signals governing the decision to cooperate in a bacterial social trait. PLoS Comput Biol 11:e1004279

    Google Scholar 

  8. Bains M, Fernández L, Hancock REW (2012) Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol 78:6762–6768

    CAS  Google Scholar 

  9. van Ditmarsch D et al (2013) Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 4:697–708

    Google Scholar 

  10. Boyle KE et al (2017) Metabolism and the evolution of social behavior. Mol Biol Evol 34:2367–2379

    CAS  Google Scholar 

  11. Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA 107:3776–3781

    CAS  Google Scholar 

  12. Partridge JD, Harshey RM (2013) Swarming: flexible roaming plans. J Bacteriol 195:909–918

    CAS  Google Scholar 

  13. Belas R, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167:210–218

    CAS  Google Scholar 

  14. McCarter L, Hilmen M, Silverman M (1988) Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54:345–351

    CAS  Google Scholar 

  15. Kawagishi I, Imagawa M, Irnae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20:693–699

    CAS  Google Scholar 

  16. Köler T, Curty LK, Barja F, Van Delden C, Pechére J-C (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    Google Scholar 

  17. Maier B, Wong GCL (2015) How bacteria use type IV pili machinery on surfaces. Trends Microbiol 23:775–788

    CAS  Google Scholar 

  18. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    CAS  Google Scholar 

  19. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    CAS  Google Scholar 

  20. Eberl L, Molin S, Givskov M (1999) Surface motility of Serratia liquefaciens MG1. J Bacteriol 181:1703–1712

    CAS  Google Scholar 

  21. Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    CAS  Google Scholar 

  22. Daniels R et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci USA. 103:14965–14970

    CAS  Google Scholar 

  23. Nickzad A, Lépine F, Déziel E (2015) Quorum sensing controls swarming motility of burkholderia glumae through regulation of rhamnolipids. PLoS One 10:e0128509

    Google Scholar 

  24. Hara-hotta H, Yano I (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174:1769–1776

    Google Scholar 

  25. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, Characterization and its inhibition of fibrin clot. Appl Environ Microbiol 31:488–494

    CAS  Google Scholar 

  26. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Google Scholar 

  27. Toguchi A, Siano M, Burkart M, Harshey RM (2000) Genetics of swarming motility in Salmonella enterica Serovar typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321

    CAS  Google Scholar 

  28. Yeung ATY et al (2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 191:5592–5602

    CAS  Google Scholar 

  29. Ilkanaiv B, Kearns DB, Ariel G, Beer A (2017) Effect of cell aspect ratio on swarming bacteria. Phys Rev Lett 118:1–5

    Google Scholar 

  30. Howery KE, Clemmer KM, Emrah S (2015) Regulation of the min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J Bacteriol 197:2499–2507

    CAS  Google Scholar 

  31. Muraleedharan S, Freitas C, Mann P, Glatter T, Ringgaard S (2018) A cell length-dependent transition in MinD-dynamics promotes a switch in division-site placement and preservation of proliferating elongated Vibrio parahaemolyticus swarmer cells. Mol Microbiol 109:365–384

    CAS  Google Scholar 

  32. Turner L, Zhang R, Darnton NC, Berg HC (2010) Visualization of flagella during bacterial swarming. J Bacteriol 192:3259–3267

    CAS  Google Scholar 

  33. Little K, Austerman J, Zheng J, Gibbs KA (2019) Cell shape and population migration are distinct steps of proteus mirabilis swarming that are decoupled on high-percentage agar. J Bacteriol 201:1–15

    Google Scholar 

  34. Auer GK et al (2019) Bacterial swarming reduces Proteus mirabilis and Vibrio parahaemolyticus cell stiffness and increases β-Lactam susceptibility. MBio 10:e00210–19

    CAS  Google Scholar 

  35. Kirov SM et al (2002) Lateral flagella and swarming motility in Aeromonas species. J Bacteriol 184:547–555

    CAS  Google Scholar 

  36. Kuchma SL et al (2015) Cyclic Di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J Bacteriol 197:420–430

    CAS  Google Scholar 

  37. Partridge JD, Harshey RM (2013) More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J Bacteriol 195:919–929

    CAS  Google Scholar 

  38. Alberti L, Harshey RM (1990) Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol 172:4322–4328

    CAS  Google Scholar 

  39. Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–3094

    CAS  Google Scholar 

  40. Hoeniger JFM (1964) Cellular changes accompanying the swarming of Proteus mirabilis. Can J Microbiol 10:1–9

    CAS  Google Scholar 

  41. Tuson HH, Copeland MF, Carey S, Sacotte R, Weibel B (2013) Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments. J Bacteriol 195:368–377

    CAS  Google Scholar 

  42. Manson MD, Armitage JP, Hoch JA, Macnab RM (1998) MINIREVIEW bacterial locomotion and signal transduction. J Bacteriol 180:1009–1022

    CAS  Google Scholar 

  43. Guttenplan SB, Shaw S, Kearns DB (2013) The cell biology of peritrichous flagella in Bacillus subtili. Mol Microbiol 87:211–229

    CAS  Google Scholar 

  44. Mccarter L (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29

    CAS  Google Scholar 

  45. Roux D et al (2018) A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production. PLoS One 13:e0189810

    Google Scholar 

  46. Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833

    CAS  Google Scholar 

  47. Atkinson S, Chang C-Y, Sockett RE, Cámara M, Williams P (2006) Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 188:1451–1461

    CAS  Google Scholar 

  48. Fukami J et al (2017) Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab - V5 and Ab - V6. Arch Microbiol. https://doi.org/10.1007/s00203-017-1422-x

    Article  Google Scholar 

  49. Hoeniger JF, Tauschel HD (1974) Sequence of structural changes in cultures of Clostridium tetani grown on a solid medium. J Med Microbiol 7:425–432

    CAS  Google Scholar 

  50. Sneath PHA (1956) The change from polar to peritrichous flagellation in Chromobacterium spp. J Gen Microbiol 15:99–105

    CAS  Google Scholar 

  51. Tambalo DD, Yost CK, Hynes MF (2010) Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 307:165–174

    CAS  Google Scholar 

  52. Kaiser D, Warrick H (2011) Myxococcus xanthus swarms are driven by growth and regulated by a pacemaker. J Bacteriol 193:5898–5904

    CAS  Google Scholar 

  53. Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 23:1–7

    Google Scholar 

  54. Lin CS et al (2016) An iron detection system determines bacterial swarming initiation and biofilm formation. Sci Rep 6:1–13

    Google Scholar 

  55. McCarter L, Silverman M (1989) Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 171:731–736

    CAS  Google Scholar 

  56. Arshey RAMH (1998) The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proc Natl Acad Sci 95:2568–2573

    Google Scholar 

  57. Sar N, Mccarter L, Simon M, Silverman M (1990) Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus. J Vacteriol 172:334–341

    CAS  Google Scholar 

  58. Jiang Z, Gest H, Bauer CE (1997) Chemosensory and Photosensory Perception in Purple Photosynthetic Bacteria Utilize Common Signal Transduction Components. 179:5720–5727

    CAS  Google Scholar 

  59. Williams FD, Anderson DM, Hoffman PS, Robert H, Leonard S (1976) Evidence against the involvement of chemotaxis in swarming of Proteus mirabilis. J Bacteriol 127:237–248

    CAS  Google Scholar 

  60. Dauparas J, Lauga E (2016) Flagellar flows around bacterial swarms. Phys Rev Fluids 1:1–26

    Google Scholar 

  61. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801

    CAS  Google Scholar 

  62. Damton NC, Turner L, Rojevsky S, Berg HC (2010) Dynamics of bacterial swarming. Biophys J 98:2082–2090

    Google Scholar 

  63. Morrison RB, Scott A (1966) Swarming of proteus–a solution to an old problem? Nature 211:255–257

    CAS  Google Scholar 

  64. Connelly MB, Young GM, Sloma A (2004) Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol 186:4159–4167

    CAS  Google Scholar 

  65. Copeland MF, Flickinger ST, Tuson HH, Weibel DB (2010) Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes. Appl Environ Microbiol 76:1241–1250

    CAS  Google Scholar 

  66. Ariel G et al (2015) Swarming bacteria migrate by Lévy Walk. Nat Commun 6:8396

    CAS  Google Scholar 

  67. Tremblay J, Déziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genom 11:587

    Google Scholar 

  68. Freitas C, Glatter T, Ringgaard S (2019) The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J. https://doi.org/10.1038/s41396-019-0521-x

    Article  Google Scholar 

  69. Poudel S et al (2019) Integrated proteomics and lipidomics reveal that the swarming motility of Paenibacillus polymyxa is characterized by phospholipid modification, surfactant deployment, and flagellar specialization relative to swimming motility. Front Microbiol 10:1–16

    Google Scholar 

  70. Lai S, Tremblay J, Déziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11:126–136

    CAS  Google Scholar 

  71. Hola V, Peroutkova T, Ruzicka F (2012) Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections. FEMS Immunol Med Microbiol 65(2):343–349. https://doi.org/10.1111/j.1574-695X.2012.00976.x

    Article  CAS  Google Scholar 

  72. Overhage J, Bains M, Brazas MD, Hancock REW (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679

    CAS  Google Scholar 

  73. Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol 2:1417–1439

    Google Scholar 

Download references

Acknowledgement

We thank M.S. Akhil and Sandeep Xavier for illustrations. We thank S. Joge and M.A. Kollaran for images of P. aeruginosa swarm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, R., Singh, V. Swarming in Bacteria: A Tale of Plasticity in Motility Behavior. J Indian Inst Sci 100, 515–524 (2020). https://doi.org/10.1007/s41745-020-00177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00177-2

Navigation