Skip to main content
Log in

Thermochemistry of Solutions of Alkanes in Binary Mixtures: Azeotropes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This work is devoted to the study of azeotropes by the method of solvation thermodynamics. In the present work the thermochemistry of alkane solutions in binary mixtures was studied. The infinite dilution solution enthalpies of n-hexane, n-octane, and n-dodecane in binary mixtures were measured at 298.15 K. Alkanes were used as solutes since they are not capable of specific interactions with solvents. It should be noted that the differences in the solution of alkanes in a series of solvents are caused by differences in the interactions between the solvent molecules. Binary mixtures (benzene–cyclohexane) and (n-hexane–acetone) at different molar ratios, including the compositions corresponding to azeotropes, were used. The composition of both azeotropes obtained by distillation was determined by means of densimetry, and was found to be in good agreement with published data. The compositions of chosen azeotropes insignificantly change with temperature. The excess solution enthalpies of n-alkanes in binary solvents were calculated. It was found that the extremum value of the excess solution enthalpy corresponds to their azeotrope composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gmehling, J., Menke, J., Krafczyk, J., Fischer, K., Fontaine, J.C., Kehiaian, H.V.: Azeotropic data for binary mixtures. In: Lide, R. (ed.) CRC Handbook of Chemistry and Physics, pp. 210–228. CRC Press, Boca Raton (2005)

    Google Scholar 

  2. Horsley, L.H. (ed.): Azeotropic Data III. American Chemical Society, Washington (1973)

    Google Scholar 

  3. Ogorodnikov, S.K., Lesteva, T.M., Kogan, V.B.: Azeotropic Mixtures. Khimia, Leningrad (1971)

    Google Scholar 

  4. Ewell, R.H., Harrison, J.M., Berg, L.: Azeotropic distillation. Ind. Eng. Chem. 36(10), 871–875 (1944). https://doi.org/10.1021/ie50418a002

    Article  CAS  Google Scholar 

  5. Demirel, Y.: Estimation of the entropy of vaporization at the normal boiling point for azeotropic mixtures containing water, alcohol or acetic acid. Thermochim. Acta 339(1–2), 79–85 (1999). https://doi.org/10.1016/S0040-6031(99)00211-7

    Article  CAS  Google Scholar 

  6. Chen, G.H., Wang, Q., Zhang, L.Z., Bao, J.B., Han, S.J.: Study and applications of binary and ternary azeotropes. Thermochim. Acta. 253, 295–305 (1995). https://doi.org/10.1016/0040-6031(94)02078-3

    Article  CAS  Google Scholar 

  7. Meissner, H.P., Greenfeld, S.H.: Composition and boiling points of binary azeotropes. Ind. Eng. Chem. 40(3), 438–442 (1948). https://doi.org/10.1021/ie50459a018

    Article  CAS  Google Scholar 

  8. Solomonov, B.N., Novikov, V.B.: A simple method for determining the enthalpy of specific solute–solvent interaction. Russ. J. Gen. Chem. 74(5), 694–700 (2004). https://doi.org/10.1023/B:RUGC.0000039080.69334.f9

    Article  CAS  Google Scholar 

  9. Solomonov, B.N., Novikov, V.B., Varfolomeev, M.A., Klimovitskii, A.E.: Calorimetric determination of hydrogen-bonding enthalpy for neat aliphatic alcohols. J. Phys. Org. Chem. 18(11), 1132–1137 (2005). https://doi.org/10.1002/poc.977

    Article  CAS  Google Scholar 

  10. Solomonov, B.N., Novikov, V.B., Varfolomeev, M.A., Mileshko, N.M.: A new method for the extraction of specific interaction enthalpy from the enthalpy of solvation. J. Phys. Org. Chem. 18(1), 49–61 (2005). https://doi.org/10.1002/poc.753

    Article  CAS  Google Scholar 

  11. Rakipov, I.T., Petrov, A.A., Akhmadeev, B.S., Varfolomeev, M.A., Solomonov, B.N.: Thermodynamic of dissolution and hydrogen bond of the pyrrole N-methylpyrrole with proton acceptors. Thermochim. Acta 640, 19–25 (2016). https://doi.org/10.1016/j.tca.2016.07.009

    Article  CAS  Google Scholar 

  12. Rakipov, I.T., Sabirzyanov, A.N., Petrov, A.A., Akhmadiayrov, A.A., Varfolomeev, M.A., Solomonov, B.N.: Thermochemistry of hydrogen bonding of linear and cyclic amides in proton acceptors media. Thermochim. Acta 652, 34–38 (2017). https://doi.org/10.1016/j.tca.2017.03.016

    Article  CAS  Google Scholar 

  13. Varfolomeev, M.A., Rakipov, I.T., Solomonov, B.N., Lodowski, P., Marczak, W.: Positive and negative contributions in the solvation enthalpy due to specific interactions in binary mixtures of C1–C4 n-alkanols and chloroform with butan-2-one. J. Phys. Chem. B 119(25), 8125–8134 (2015). https://doi.org/10.1021/acs.jpcb.5b03811

    Article  CAS  PubMed  Google Scholar 

  14. Varfolomeev, M.A., Rakipov, I.T., Solomonov, B.N., Marczak, W.: Speed of sound, density, and related thermodynamic excess properties of binary mixtures of 2-pyrrolidone and N-methyl-2-pyrrolidone with acetonitrile and chloroform. J. Chem. Eng. Data 61(3), 1032–1046 (2016). https://doi.org/10.1021/acs.jced.5b00474

    Article  CAS  Google Scholar 

  15. Varfolomeev, M.A., Zaitseva, K.V., Rakipov, I.T., Solomonov, B.N., Marczak, W.: Speed of sound, density, and related thermodynamic excess properties of binary mixtures of butan-2-one with C1–C4 n-alkanols and chloroform. J. Chem. Eng. Data 59(12), 4118–4132 (2014). https://doi.org/10.1021/je5007604

    Article  CAS  Google Scholar 

  16. Varfolomeev, M.A., Abaidullina, D.I., Rakipov, I.T., Solomonov, B.N.: Cooperative effect of hydrogen bonds in the complexes of aliphatic alcohols with proton acceptors in chloroform. Russ. J. Gen. Chem. 78(12), 2283–2292 (2008). https://doi.org/10.1134/S1070363208120013

    Article  CAS  Google Scholar 

  17. Varfolomeev, M.A., Zaitseva, K.V., Rakipov, I.T., Solomonov, B.N.: Enthalpy of cooperative hydrogen bonding in the complexes of triethyl- and tri-n-butylamines with alcohols: effect of the alkyl chain length. Russ. J. Gen. Chem. 80(3), 402–407 (2010). https://doi.org/10.1134/S1070363210030059

    Article  CAS  Google Scholar 

  18. Kamlet, M.J., Abboud, J.L.M., Taft, R.W.: The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99(18), 6027–6038 (1977). https://doi.org/10.1021/ja00460a031

    Article  CAS  Google Scholar 

  19. Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98(2), 377–383 (1976). https://doi.org/10.1021/ja00418a009

    Article  CAS  Google Scholar 

  20. Golubev, N.S., Denisov, G.S.: Study of mutual influence of hydrogen bonds in complicated complexes by low-temperature 1H NMR spectroscopy. J. Mol. Struct. 270, 263–276 (1992). https://doi.org/10.1016/0022-2860(92)85033-D

    Article  CAS  Google Scholar 

  21. Golubev, N.S., Tolstoy, P.M., Smirnov, S.N., Denisov, G.S., Limbach, H.H.: Low-temperature NMR spectra of fluoride–acetic acid hydrogen-bonded complexes in aprotic polar environment. J. Mol. Struct. 700(1–3), 3–12 (2004). https://doi.org/10.1016/j.molstruc.2004.01.024

    Article  CAS  Google Scholar 

  22. Solomonov, B.N., Antipin, I.S., Gorbachuk, V.V., Konovalov, A.I.: Solvation of organic compounds. Determination of relative enthalpies of the formation of a cavity in solvents. Russ. J. Gen. Chem. 52(10), 1917–1922 (1982)

    Google Scholar 

  23. Perrin, D.D., Armarego, W.L.F., Perrin, D.R.: Purification of Laboratory Chemicals. Pergamon Press, Oxford (1980)

    Google Scholar 

  24. Bruttel, P.A., Schlink, R.: Water Determination by Karl Fischer Titration. Metrohm. Inc., Muttukkaranchavadi (2011)

    Google Scholar 

  25. Rakipov, I.T., Varfolomeev, M.A., Kirgizov, A.Y., Solomonov, B.N.: Thermodynamics of the hydrogen bonding of nitrogen-containing cyclic and aromatic compounds with proton donors: the structure–property relationship. Russ. J. Phys. Chem. A 88(12), 2023–2028 (2014). https://doi.org/10.1134/S0036024414120255

    Article  CAS  Google Scholar 

  26. Fuchs, R., Stephenson, W.K.: Enthalpies of transfer of alkane solutes from vapor state to organic solvents. Can. J. Chem. 63(2), 349–352 (1985). https://doi.org/10.1139/v85-059

    Article  CAS  Google Scholar 

  27. Fuchs, R., Chambers, E.J., Stephenson, W.K.: Enthalpies of interaction of nonpolar solutes with nonpolar solvents. The role of solute polarizability and molar volume in solvation. Can. J. Chem. 65(11), 2624–2627 (1987). https://doi.org/10.1139/v87-433

    Article  CAS  Google Scholar 

  28. Saluja, P.S., Young, T.M., Rodewald, R.F., Fuchs, F.H., Kohli, D., Fuchs, R.: Enthalpies of interaction of alkanes and alkenes with polar and nonpolar solvents. J. Am. Chem. Soc. 99(9), 2949–2953 (1977). https://doi.org/10.1021/ja00451a016

    Article  CAS  Google Scholar 

  29. Krishnan, C.V., Friedman, H.L.: Solvation enthalpies of hydrocarbons and normal alcohols in highly polar solvents. J. Phys. Chem. 75(23), 3598–3606 (1971). https://doi.org/10.1021/j100692a020

    Article  CAS  Google Scholar 

  30. Abraham, M.H., McGowan, J.C.: The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23(4), 243–246 (1987). https://doi.org/10.1007/BF02311772

    Article  CAS  Google Scholar 

  31. Solomonov, B.N., Konovalov, A.I., Novikov, V.B., Vedernikov, A.N., Borisover, M.D., Gorbachuk, V.V., Antipin, I.S.: Solvation of organic compounds. Molecular refraction, dipole moment, and enthalpy of solvation. Russ. J. Gen. Chem. 54(7), 1444–1453 (1984)

    Google Scholar 

  32. Solomonov, B.N., Chumakov, F.V., Borisover, M.D.: Multipole interactions and enthalpy of solvation. Russ. J. Phys. Chem. A 67(6), 1158–1159 (1993)

    Google Scholar 

  33. Solomonov, B.N., Varfolomeev, M.A., Novikov, V.B., Klimovitskii, A.E.: New thermochemical parameter for describing solvent effects on IR stretching vibration frequencies communication 1. Assessment of van der Waals interactions. Spectrochim. Acta Part A 64(2), 397–404 (2006). https://doi.org/10.1016/j.saa.2005.07.036

    Article  CAS  Google Scholar 

  34. Solomonov, B.N., Varfolomeev, M.A., Novikov, V.B., Klimovitskii, A.E.: New thermochemical parameter for describing solvent effects on IR stretching vibration frequencies communication 2. Assessment of cooperativity effects. Spectrochim. Acta A 64(2), 405–411 (2006). https://doi.org/10.1016/j.saa.2005.07.037

    Article  CAS  Google Scholar 

  35. Solomonov, B.N., Varfolomeev, M.A., Abaidullina, D.I.: Cooperative hydrogen bonding in solution: influence of molecule structure. Vib. Spectrosc. 43(2), 380–386 (2007). https://doi.org/10.1016/j.vibspec.2006.04.024

    Article  CAS  Google Scholar 

  36. Solomonov, B.N., Varfolomeev, M.A., Novikov, V.B., Klimovitskii, A.E., Fayzullin, D.A.: The influence of H-bonding on the enthalpies of solvation of proton acceptors in methanol. Russ. J. Phys. Chem. A 79(7), 1029–1032 (2005)

    CAS  Google Scholar 

  37. González, E.J., Calvar, N., González, B., Domínguez, A.: Liquid–liquid equilibrium for ternary mixtures of hexane + aromatic compounds + [EMpy][ESO4] at T = 298.15K. J. Chem. Eng. Data 55(2), 633–638 (2010). https://doi.org/10.1021/je900557u

    Article  CAS  Google Scholar 

  38. Dymond, J.H., Young, K.J.: Transport properties of nonelectrolyte liquid mixtures – I. Viscosity coefficients for n-alkane mixtures at saturation pressure from 283 to 378 K. Int. J. Thermophys. 1(4), 331–344 (1980). https://doi.org/10.1007/BF00516562

    Article  CAS  Google Scholar 

  39. Balán, J., Morávková, L., Linek, J.: Excess molar volumes of the (cyclohexane + pentane, or hexane, or heptane, or octane, or nonane) systems at the temperature 298.15 K. Chem. Pap. 61(6), 497–501 (2007). https://doi.org/10.2478/s11696-007-0068-6

    Article  CAS  Google Scholar 

  40. Liao, W.C., Lin, H.M., Lee, M.J.: Excess molar enthalpies of binary systems of 2-octanone or 3-octanone with dodecane, tetradecane, or hexadecane at 298.15 K. J. Chem. Eng. Data 55(1), 217–222 (2010). https://doi.org/10.1021/je900311v

    Article  CAS  Google Scholar 

  41. Zhao, X.B., Ji, X.H., Zhang, Y.H., Lu, B.H.: Effect of solvent on the microstructures of nanostructured Bi2Te3 prepared by solvothermal synthesis. J. Alloys Compd. 368(1–2), 349–352 (2004). https://doi.org/10.1016/j.jallcom.2003.08.070

    Article  CAS  Google Scholar 

  42. Enders, S., Kahl, H., Winkelmann, J.: Surface tension of the ternary system water + acetone + toluene. J. Chem. Eng. Data 52(3), 1072–1079 (2007). https://doi.org/10.1021/je7000182

    Article  CAS  Google Scholar 

  43. Sastry, N.V., Patel, S.R., Soni, S.S.: Densities, speeds of sound, excess molar volumes, and excess isentropic compressibilities at T = (298.15 and 308.15) K for methyl methacrylate + 1-alkanols (1-butanol, 1-pentanol, and 1-heptanol) + cyclohexane, + benzene, + toluene, + p -xylene, and + ethylbenzene. J. Chem. Eng. Data 56(1), 142–152 (2011). https://doi.org/10.1021/je100652b

    Article  CAS  Google Scholar 

  44. Fuchs, R., Peacock, L.A., Stephenson, W.K.: Enthalpies of interaction of polar and nonpolar molecules with aromatic solvents. Can. J. Chem. 60(15), 1953–1958 (1982). https://doi.org/10.1139/v82-273

    Article  CAS  Google Scholar 

  45. Trampe, D.M., Eckert, C.A.: Calorimetric measurement of partial molar excess enthalpies at infinite dilution. J. Chem. Eng. Data 36(1), 112–118 (1991). https://doi.org/10.1021/je00001a033

    Article  CAS  Google Scholar 

  46. Das, D., Ouerfelli, N.: The relative reduced Redlich–Kister and Herráez equations for correlating excess properties of N,N-dimethylacetamide + formamide binary mixtures at temperatures from 298.15 K to 318.15 K. J. Solution Chem. 41(8), 1334–1351 (2012). https://doi.org/10.1007/s10953-012-9878-4

    Article  CAS  Google Scholar 

  47. Das, D., Messaâdi, A., Barhoumi, Z., Ouerfelli, N.: The relative reduced Redlich–Kister equations for correlating excess properties of N,N-dimethylacetamide + water binary mixtures at temperatures from 298.15 K to 318.15 K. J. Solution Chem. 41(9), 1555–1574 (2012). https://doi.org/10.1007/s10953-012-9888-2

    Article  CAS  Google Scholar 

  48. Desnoyers, J.E., Perron, G.: Treatment of excess thermodynamic quantities for liquid mixtures. J. Solution Chem. 26(8), 749–755 (1997). https://doi.org/10.1007/BF02767781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted with support of the Russian Science Foundation (Project No. 18-73-00254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem A. Petrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.A., Rakipov, I.T., Fakhurtdinova, A.R. et al. Thermochemistry of Solutions of Alkanes in Binary Mixtures: Azeotropes. J Solution Chem 49, 645–658 (2020). https://doi.org/10.1007/s10953-020-00982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00982-4

Keywords

Navigation