Skip to main content
Log in

Crack-and-Fold Style Defects in CVD Graphene on Raw Cu Foils

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The rarely reported defects with crack-and-fold (CAF) style graphene grown on raw Cu foils substrates by chemical vapor deposition (CVD) were examined in this study. Factors for the formation of CAF defects were explored by performing different substrate treatments and varied hydrogen inflow. A clear relationship was found between CAF defects and Cu (110) facets by electron back-scattered diffraction measurement. CAF defects were affected by the interaction between graphene and the substrate. A model with a two-step process, including cracking and folding, is established to elucidate the formation of CAF defects. CAF defects can be reduced by performing substrate treatment, varying hydrogen flow and controlling the orientation of the Cu substrate. This study was performed to improve the quality of graphene grown by CVD for industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Q.K. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S.S. Pei, Appl. Phys. Lett. 93, 113103 (2008).

    Article  Google Scholar 

  2. M. Bernardi, M. Palummo, and J.C. Grossman, Nano Lett. 13, 3664 (2013).

    Article  CAS  Google Scholar 

  3. Y. Han, Y.X. Liu, L. Han, J. Lin, and P. Jin, Carbon 115, 34 (2017).

    Article  CAS  Google Scholar 

  4. U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini, D. De Fazio, Z. Zhao, E. Lidorikis, F.H.L. Koppens, A.C. Ferrari, and A. Colli, Nat. Commun. 8, 14311 (2017).

    Article  CAS  Google Scholar 

  5. C.T. Cheng, B.J. Huang, X.R. Mao, Z.Y. Zhang, Z. Zhang, Z.X. Geng, P. Xue, and H.D. Chen, Sci. Rep. 7, 46605 (2017).

    Article  CAS  Google Scholar 

  6. F. Colangelo, P. Pingue, V. Mišeikis, and C. Coletti, 2D Mater. 6, 025005 (2019).

    Article  CAS  Google Scholar 

  7. P. Sharma, S. Gupta, and I. Kaur, J. Electron. Mater. 48, 3043 (2019).

    Article  CAS  Google Scholar 

  8. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).

    Article  CAS  Google Scholar 

  9. E.S. Polsen, D.Q. McNerny, B. Viswanath, S.W. Pattinson, and A.J. Hart, Sci. Rep. 5, 10257 (2015).

    Article  Google Scholar 

  10. D. Sen, K.S. Novoselov, P.M. Reis, and M.J. Buehler, Small 6, 1108 (2010).

    Article  CAS  Google Scholar 

  11. R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C.R. Dean, Science 361, 690 (2018).

    Article  CAS  Google Scholar 

  12. J. Annett and G.L.W. Cross, Nature 535, 271 (2016).

    Article  CAS  Google Scholar 

  13. Z.H. Ni, T. Yu, Z.Q. Luo, Y.Y. Wang, L. Liu, C.P. Wong, J.M. Miao, W. Huang, and Z.X. Shen, ACS Nano 3, 569 (2009).

    Article  CAS  Google Scholar 

  14. D. Luo, M.H. Wang, Y.Q. Li, C.S. Kim, K.M. Yu, Y.H. Kim, H.J. Han, M. Biswal, M. Huang, Y.W. Kwon, M. Goo, D.C. Camacho-Mojica, H.F. Shi, W.J. Yoo, M.S. Altman, H.J. Shin, and R.S. Ruoff, Adv. Mater. 31, 1903615 (2019).

    Article  Google Scholar 

  15. Z.W. Zhu, L.J. Zhan, T.M. Shih, W. Wan, J. Lu, J.J. Huang, S.S. Guo, Y.H. Zhou, and W.W. Cai, Small 14, 1802498 (2018).

    Article  Google Scholar 

  16. R. Kojima and M. Susa, High Temp. High Press. 34, 639 (2002).

    Article  CAS  Google Scholar 

  17. J.L. Zhang, Z.Z. Wang, T.C. Niu, S.N. Wang, Z.Y. Li, and W. Chen, Sci. Rep. 4, 4431 (2014).

    Article  Google Scholar 

  18. S.D. Costa, J.E. Weis, O. Frank, and M. Kalbac, Carbon 93, 793 (2015).

    Article  CAS  Google Scholar 

  19. B. Deng, Z.Q. Pang, S.L. Chen, X. Li, C.X. Meng, J.Y. Li, M.X. Liu, J.X. Wu, Y. Qi, W.H. Dang, H. Yang, Y.F. Zhang, J. Zhang, N. Kang, H.Q. Xu, Q. Fu, X.H. Qiu, P. Gao, Y.J. Wei, Z.F. Liu, and H.L. Peng, ACS Nano 11, 12337 (2017).

    Article  CAS  Google Scholar 

  20. O. Frank, J. Vejpravova, V. Holy, L. Kavan, and M. Kalbac, Carbon 68, 440 (2014).

    Article  CAS  Google Scholar 

  21. H. Wang, G.Z. Wang, P.F. Bao, S.L. Yang, W. Zhu, X. Xie, and W.J. Zhang, J. Am. Chem. Soc. 134, 3627 (2012).

    Article  CAS  Google Scholar 

  22. T.J. Gnanaprakasa, Y.X. Gu, S.K. Eddy, Z.X. Han, W.J. Beck, K. Muralidharan, and S. Raghavan, Microelectron. Eng. 131, 1 (2015).

    Article  CAS  Google Scholar 

  23. T.H. Seo, S. Lee, H. Cho, S. Chandramohan, E.K. Suh, H.S. Lee, S.K. Bae, S.M. Kim, M. Park, J.K. Lee, and M.J. Kim, Sci. Rep. 6, 24143 (2016).

    Article  CAS  Google Scholar 

  24. Y.H. Zhang, H.R. Zhang, F. Li, H.B. Shu, Z.Y. Chen, Y.P. Sui, Y.Q. Zhang, X.M. Ge, G.H. Yu, Z. Jin, and X.Y. Liu, Carbon 96, 237 (2016).

    Article  CAS  Google Scholar 

  25. J.D. Wood, S.W. Schmucker, A.S. Lyons, E. Pop, and J.W. Lyding, Nano Lett. 11, 4547 (2011).

    Article  CAS  Google Scholar 

  26. S.J. Kim, T.J. Choi, B. Lee, S.W. Lee, K.J. Choi, J.B. Park, J.M. Yoo, Y.S. Choi, J. Ryu, P. Kim, J. Hone, and B.H. Hong, Nano Lett. 15, 3236 (2015).

    Article  CAS  Google Scholar 

  27. H. Hattab, A.T. N’Diaye, D. Wall, C. Klein, G. Jnawali, J. Coraux, C. Busse, R.V. Gastel, B. Poelsema, T. Michely, F.J.M.Z. Heringdorf, and M.H. Hoegen, Nano Lett. 12, 678 (2012).

    Article  CAS  Google Scholar 

  28. Z.Q. Pang, B. Deng, Z.F. Liu, H.L. Peng, and Y.J. Wei, Carbon 143, 736 (2019).

    Article  CAS  Google Scholar 

  29. X.M. Ge, Y.H. Zhang, L.X. Chen, Y.H. Zheng, Z.Y. Chen, Y.J. Liang, S.K. Hu, J. Li, Y.P. Sui, and G.H. Yu, Carbon 139, 989 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National defense technology innovation special zone project, the National Natural Science Foundation of China (No. 51402342), and the Science and Technology Commission of Shanghai Municipality (18511110700). Thanks is given to the Superconducting Electronics Facility (SELF) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Y., Zhang, Y., Chen, Z. et al. Crack-and-Fold Style Defects in CVD Graphene on Raw Cu Foils. J. Electron. Mater. 49, 4403–4409 (2020). https://doi.org/10.1007/s11664-020-08168-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08168-w

Keywords

Navigation