Skip to main content
Log in

Comparative Analysis of the Effects of Trap Charges on Single- and Double-Gate Extended-Source Tunnel FET with δp+ SiGe Pocket Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper investigates the trap analysis of a double-gate extended-source tunnel field-effect transistor (DG-ESTFET) and single-gate extended-source tunnel field-effect transistor (SG-ESTFET) with a δp+ SiGe pocket layer. The trap analysis of both structures is compared in terms of the currents, average subthreshold swing, threshold voltage, and switching ratio. In addition, the impact of interface trap charges at different interfaces on analog/RF performance, transfer characteristics, and slope are investigated and compared. It is observed that the trap charges between the silicon and front gate oxide interface (Si–HfO2) have a greater effect on the DG-ESTFET than the SG-ESTFET, whereas the reverse is true when trap charges are at the back gate oxide interface (Si–SiO2). In the case of analog/RF performance, the SG-ESTFET is found to be more affected by the trap charges at the silicon and front gate oxide interface (Si–HfO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors. http://www.maltiel-consulting.com/ITRS-2011-Executive-Summary.pdf. 2011

  2. J. Madan and R. Chaujar, Appl. Phys. A 122, 973 (2016).

    Article  Google Scholar 

  3. K.E. Moselund, D. Cutaia, H. Schmid, M. Borg, S. Sant, and H. Riel, IEEE Trans. Electron Devices 63, 1 (2016).

    Article  Google Scholar 

  4. S. Kumar, E. Goel, K. Singh, B. Singh, M. Kumar, and S. Jit, IEEE Trans. Electron Devices 63, 8 (2016).

    Google Scholar 

  5. S. Kumar, E. Goel, K. Singh, B. Singh, P.K. Singh, K. Baral, and S. Jit, IEEE Trans. Electron Devices 64, 3 (2017).

    Article  Google Scholar 

  6. J. Talukdar and K. Mummaneni, Appl. Phys. A 126, 81 (2020).

    Article  CAS  Google Scholar 

  7. E. Goel, S. Kumar, K. Singh, B. Singh, M. Kumar, and S. Jit, IEEE Trans. Electron Devices 63, 3 (2016).

    Article  Google Scholar 

  8. J. Talukdar, K. Mummaneni. (2019). https://doi.org/10.1007/s12633-019-00321-3.

  9. J. Robertson, Microelectronic Eng. 86, 1558–1560 (2009). https://doi.org/10.1016/j.mee.2009.03.053.

    Article  CAS  Google Scholar 

  10. M. Passlack, R. Droopad, and G. Brammertz, IEEE Trans. Electron Devices 57, 11 (2010).

    Article  Google Scholar 

  11. A. Schenk, Solid-Store Electron. 35, 11 (1992).

    Google Scholar 

  12. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, IEEE Electron Device Lett. 30, 10 (2009).

    Article  Google Scholar 

  13. C. Liu, S. Glass, G.V. Luong, K. Narimani, Q. Han, A.T. Tiedemann, A. Fox, W. Yu, X. Wang, S. Mantl, and Q.T. Zhao, IEEE Electron Device Lett. 38, 6 (2017).

    Google Scholar 

  14. C. Huang, T.Y. Hung, P.Y. Wang, and B.Y. Tsui, in International Symposium on Next-Generation Electronics (ISNE), Taipei (2015), pp. 1–2.

  15. F. Mayer, C. L. Royer, J. F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, in 2008 IEEE International Electron Devices Meeting, (IEDM), (2008), pp. 1–5.

  16. T.C.A.D. Synopsys, Manual, version. E2010.12.

  17. A.O. Adan and K. Higashi, IEEE Trans. Electron Devices 48, 9 (2001).

    Article  Google Scholar 

  18. D. Barah, A.K. Singh, and B. Bhowmick, Silicon 11, 2 (2019).

    Article  Google Scholar 

  19. R.N. Sajjad, W. Chern, J.L. Hoyt, and D.A. Antoniadis, IEEE Trans. Electron Devices 63, 11 (2016).

    Article  Google Scholar 

  20. M.G. Pala and D. Esseni, IEEE Trans. Electron Devices 60, 9 (2013).

    Article  Google Scholar 

  21. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, IEEE Trans. Electron Devices 56, 9 (2009).

    Article  Google Scholar 

  22. J. Madan and R. Chaujar, IEEE Trans. Electron Devices 64, 4 (2017).

    Article  Google Scholar 

  23. P.G. Bahubalindruni, A. Kiazadeh, A. Sacchetti, J. Martins, A. Rovisco, V.G. Tavares, R. Martins, E. Fortunato, and P. Barquinha, J. Display Technol. 2, 6 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagritee Talukdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, J., Rawat, G., Singh, K. et al. Comparative Analysis of the Effects of Trap Charges on Single- and Double-Gate Extended-Source Tunnel FET with δp+ SiGe Pocket Layer. J. Electron. Mater. 49, 4333–4342 (2020). https://doi.org/10.1007/s11664-020-08151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08151-5

Keywords

Navigation