Skip to main content
Log in

Electromigration Behavior of Low-Silver Sn-0.3Ag-0.7Cu-1.6Bi-0.2In Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In typical service environments, high current densities pass through the interconnection leads of solder joints. The electromigration reliability of solder joints is thus of great significance. The microstructure, crystal orientation, and electromigration reliability of Sn-0.3Ag-0.7Cu-1.6Bi-0.2In solder were studied in this work. The results showed that the melting point of Sn-0.3Ag-0.7Cu-1.6Bi-0.2In solder is 212.3°C, with good wettability. The addition of Bi and In reduced the melting point and undercooling of the solder, with improved solder wettability. Compared with Sn-3.0Ag-0.5Cu solder, the microstructure of the remelted solder was well distributed with fine grains. Compounds formed by substituting Sn atoms with In atoms. Among the linear solder joints, those made of Sn-0.3Ag-0.7Cu-1.6Bi-0.2In showed easier formation of polycrystalline structure, and the c-axis orientation of β-Sn grains was more disordered. The addition of Bi and In to form Sn-0.3Ag-0.7Cu-1.6Bi-0.2In affected the formation and growth of intermetallic compounds and improved the electromigration reliability of solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Chen, Energy Res. Inf. 30, 52 (2014).

    Google Scholar 

  2. E.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  CAS  Google Scholar 

  3. G. Wei., D. Luo, L. Shi, and G. He, in APM Conference Proceedings (2011), pp. 302–307.

  4. Y. Zuo, T.R. Bieler, Q. Zhou, L. Ma, and F. Guo, J. Electron. Mater. 47, 1881 (2017).

    Article  Google Scholar 

  5. Y. Liu, F.L. Sun, H.W. Zhang, and Y. Wang, in Proceedings of 2011 6th International Forum on Strategic Technology (2011), pp. 72–75.

  6. M. Matahir, L.T. Chin, K.S. Tan, and A.O. Olofinjana, J. Achiev. Mater. Manuf. Eng. 46, 50 (2011).

    Google Scholar 

  7. W.G. Hu, F.L. Sun, L.F. Wang, and X. Ma, Electron. Compon. Mater. 27, 38 (2008).

    CAS  Google Scholar 

  8. M. He, S.N. Ekpenuma, and V.L. Acoff, J. Electron. Mater. 37, 300 (2008).

    Article  Google Scholar 

  9. A.O. Olofinjana, N.Y. Voo, M. Matahir, in 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23),ed. by S.T. Smith (2014), pp. 199–204.

  10. A.M. Yu, C.W. Lee, M.S. Kim, and J.H. Lee, Met. Mater. Int. 13, 517 (2007).

    Article  CAS  Google Scholar 

  11. A. Sharif and Y.C. Chan, J. Alloys Compd. 390, 67 (2005).

    Article  CAS  Google Scholar 

  12. Š. Beáta, H. Erika, and K. Ingrid, Weld. World. 61, 1 (2017).

    Article  Google Scholar 

  13. A. Lis, K. Nakanishi, T. Matsuda, T. Sano, and A. Hirose, J. Electron. Mater. 46, 1 (2017).

    Article  Google Scholar 

  14. N.C. Lee and B. Huang, Proc. SPIE-Int. Soc. Opt. Eng. 3906, 711 (1999).

    Google Scholar 

  15. M.G. Cho, S.K. Kang, and H.M. Lee, J. Mater. Res. 23, 1147 (2008).

    Article  CAS  Google Scholar 

  16. Standard SJ/T11186–2009 for Electronics Industry of the People's Republic of China. General Specification for Solder Paste. Ministry of Electronic Industry of the People's Republic of China (2009).

  17. L.F. Wang, F.L. Sun, X.J. Liu, and Y. Liang, Trans. China Weld. Inst. 29, 9 (2008).

    Google Scholar 

  18. A.T. Wu, M.H. Chen, and C.N. Siao, J. Electron. Mater. 38, 252 (2009).

    Article  CAS  Google Scholar 

  19. M. Lu, D. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  20. S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009).

    Article  CAS  Google Scholar 

  21. M.Y. Xiong, L. Zhang, Z.Q. Liu, W.M. Long, and S.J. Zhong, Electron. Compon. Mater. 37, 12 (2018).

    Google Scholar 

  22. H.W. Zhang, Y. Liu, J. Wang, F.L. Sun, and Z. Zhou, Trans. China Weld. Inst. 38, 83 (2017).

    Google Scholar 

  23. Y. Li, B.Y. Lim, K. Luo, Z. Chen, and F. Wu, J. Alloys Compd. 673, 372 (2016).

    Article  CAS  Google Scholar 

  24. Y. Zuo, L.M. Ma, S.H. Liu, Y.T. Shu, and F. Guo, J. Electron. Mater. 44, 597 (2015).

    Article  CAS  Google Scholar 

  25. W. Yue, H.B. Qin, M.B. Zhou, X. Ma, and X.P. Zhang, Trans. Nonferr. Met. Soc. China. 24, 1619 (2014).

    Article  CAS  Google Scholar 

  26. C.M. Chuang and K.L. Lin, J. Electron. Mater. 32, 1426 (2003).

    Article  CAS  Google Scholar 

  27. L. Zhang, X.Y. Fan, C.W. He, and Y.H. Guo, J. Mater. Sci.: Mater. Electron. 24, 3249 (2013).

    CAS  Google Scholar 

  28. J. Cheng, M. Qu, Y. Cui, and F.B. Liu, Spec. Cast. Nonferr. Alloys. 37, 1157 (2017).

    Google Scholar 

  29. M.J. Dong, Z.M. Gao, Y.C. Liu, X. Wang, and L.M. Yu, Int. J. Miner. Metall. Mater. 19, 1029 (2012).

    Article  CAS  Google Scholar 

  30. Y. Liu and F.L. Sun, Trans. Nonferr. Met. Soc. China. 22, 460 (2012).

    CAS  Google Scholar 

  31. N.F. Bao, X.W. Hu, and T. Xu, Mater. Rev. 32, 2015 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Han, J., Guo, F. et al. Electromigration Behavior of Low-Silver Sn-0.3Ag-0.7Cu-1.6Bi-0.2In Solder Joints. J. Electron. Mater. 49, 4237–4248 (2020). https://doi.org/10.1007/s11664-020-08147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08147-1

Keywords

Navigation