Skip to main content
Log in

Enhanced Thermoelectric Performance of SnxBi0.5-xSb1.5Te3 Through the Synergistic Effects of Carrier and Phonon Engineering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

SnxBi0.5-xSb1.5Te3 materials with high ZT values were prepared by vacuum melting, ball milling, cold pressing and ambient pressure sintering. The effect of Sn doping amount on the thermoelectric performance of Bi0.5Sb1.5Te3 -based materials was investigated. The results showed that Sn doping increased the carrier concentration and DOS effective mass to improve the electrical conductivity and Seebeck coefficient, respectively, resulting in an increase in the power factor. Meanwhile, the reduction in lattice thermal conductivity was attributed to enhanced phonon scattering. The decrease in bipolar thermal conductivity was caused by the suppression of intrinsic excitation. Finally, compared with Bi0.5Sb1.5Te3, the power factor increased 66%, to 2.72 mW·m−1·K−2, lattice thermal conductivity decreased by 28% to 0.334 W·m−1·K−1, and the ZT value for Sn0.01Bi0.49Sb1.5Te3 at 350 K was 1.33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, Adv. Energy Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  2. Q. Jin, S. Jiang, Y. Zhao, D. Wang, J. Qiu, D.M. Tang, J. Tan, D.M. Sun, P.X. Hou, X.Q. Chen, K. Tai, N. Gao, C. Liu, H.M. Cheng, X. Jiang, Nat. Mater. 18, 62–68 (2019)

    Article  CAS  Google Scholar 

  3. F. Hao, P.F. Qiu, Y.S. Tang, S.Q. Bai, T. Xing, H.S. Chu, Q.H. Zhang, P. Lu, T.S. Zhang, D.D. Ren, J.K. Chen, X. Shi, L.D. Chen, Energy Environ. Sci. 9, 3120–3127 (2016)

    Article  CAS  Google Scholar 

  4. Y. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24, 6125–6135 (2012)

    Article  CAS  Google Scholar 

  5. J.S. Yoon, J.M. Song, J.U. Rahman, S. Lee, W.S. Seo, K.H. Lee, S. Kim, H.S. Kim, S.I. Kim, W.H. Shin, Acta Mater. 158, 289–296 (2018)

    Article  CAS  Google Scholar 

  6. W. Li, L.L. Zheng, B.H. Ge, S.Q. Lin, X.Y. Zhang, Z.W. Chen, Y.J. Chang, Y.Z. Pei, Adv. Mater. 29, 1605887 (2017)

    Article  Google Scholar 

  7. Y. Wu, P. Nan, Z. Chen, Z. Zeng, S. Lin, X. Zhang, H. Dong, Z. Chen, H. Gu, W. Li, Y. Chen, B. Ge, Y. Pei, Research 2020, 8151059 (2020)

    Google Scholar 

  8. K. Sang, L.K. Hyoung, H.A. Mun, K.H. Sik, H.S. Woo, R.J. Wook, Y.D. Jin, S.W. Ho, L.X. Shu, L.Y. Hee, Science 348, 109 (2015)

    Article  Google Scholar 

  9. Z.G. Zhang, W.W. Zhao, W.T. Zhu, S.F. Ma, C.C. Li, X. Mu, P. Wei, X.L. Nie, Q.J. Zhang, W.Y. Zhao, J. Electron. Mater. 07851, 2 (2019)

    Google Scholar 

  10. Y.Y. Li, X.Y. Qin, D. Li, J. Zhang, C. Li, Y.F. Liu, C.J. Song, H.X. Xin, H.F. Guo, Appl. Phys. Lett. 108, 062104 (2016)

    Article  Google Scholar 

  11. D. Zhang, J.L. Wang, L.J. Zhang, J.D. Lei, Z. Ma, C. Wang, W.B. Guan, Z.X. Cheng, Y.X. Wang, A.C.S. Appl, Mater. Interfaces 11, 36658–36665 (2019)

    Article  CAS  Google Scholar 

  12. H.J. Cho, H.S. Kim, M.Y. Kim, K.H. Lee, S.W. Kim, S. Kim, J. Electron. Mater. 6, 06973 (2019)

    Google Scholar 

  13. T. Xing, R.H. Liu, F. Hao, P.F. Qiu, D.D. Ren, X. Shi, L.D. Chen, J. Mater. Chem. C 5, 12619–12628 (2017)

    Article  CAS  Google Scholar 

  14. Z.C. Yao, W. Li, J. Tang, Z.W. Chen, S.Q. Lin, K. Biswas, A. Burkov, Y.Z. Pei, InfoMat 1, 571–581 (2019)

    Article  Google Scholar 

  15. K.C. Park, P. Dharmaiah, H.S. Kim, S.J. Hong, J. Alloys Compd. 692, 573–582 (2017)

    Article  CAS  Google Scholar 

  16. C.M. Jaworski, V. Kulbachinskii, J.P. Heremans, Phys. Rev. B 80, 4 (2009)

    Google Scholar 

  17. E.S. Toberer, A. Zevalkink, G. Jeffrey Snyder, J. Mater. Chem. 21, 15843–15852 (2011)

    Article  CAS  Google Scholar 

  18. V.D. Blank, S.G. Buga, V.A. Kulbachinskii, V.G. Kytin, V.V. Medvedev, M. Yu Popov, P.B. Stepanov, V.F. Skok, Phys. Rev. B 86, 3305–3307 (2012)

    Article  Google Scholar 

  19. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B Condens. Matter. 46, 6131–6140 (1992)

    Article  CAS  Google Scholar 

  20. H.J. Goldsmid, Materials 7, 2577 (2014)

    Article  CAS  Google Scholar 

  21. L. Reggiani, V. Mitin, L.R.N. Cimento, Phys. Rev. B 12, 1–90 (1989)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Science and Technology Plan Project of Changsha City, China (No. kq1801064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqing Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Ma, Z., Wang, S. et al. Enhanced Thermoelectric Performance of SnxBi0.5-xSb1.5Te3 Through the Synergistic Effects of Carrier and Phonon Engineering. J. Electron. Mater. 49, 4282–4290 (2020). https://doi.org/10.1007/s11664-020-08135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08135-5

Keywords

Navigation