Skip to main content
Log in

Dielectric Relaxation and Alternating-Current Conductivity of Highly Crystalline Poly (ethylene-2,6-naphthalenedicarboxylate) Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric relaxation and alternating-current (AC) conductivity behavior of poly(ethylene-2,6-naphthalenedicarboxylate) are found to be sensitive to its degree of crystallinity. It has been shown that increasing the temperature at low frequency leads to three relaxation phenomena due to different molecular motions: the β, β*, and α relaxation. The effects of the chemical and morphological structure of the material on the dielectric properties were also considered. AC conductivity measurements were performed and studied according to the “universal” Jonscher power law. This universal law allows satisfactory determination of the parameters A and n, which seem to be correlated via a mathematical relationship, reaching an optimum due to the β relaxation of the chain branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. C. Laurent, D. Mary, and C. Mayoux, in IEEE Annual ReportConference on Electrical Insulation and Dielectric Phenomena (1996), pp. 23–26.

  2. M. Ito and T. Kikutani, Handbook of Thermoplastic Polymers: Homopolymers, Copolymers, Blends, and Composites; Chapter␣10 PEN : Structure and Properties (Hoboken: Wiley, 2002), pp. 463–482.

    Book  Google Scholar 

  3. S. Berdous, D. Berdous, N. Saidi-Amroun, D.E. Akretche, and M. Saidi, Int. J. Polym. Anal. Charact. 18, 358 (2013).

    Article  CAS  Google Scholar 

  4. S.P. Bravard and R.H. Boyd, Macromolecules 36, 741 (2003).

    Article  CAS  Google Scholar 

  5. T.A. Ezquerra, F.J. Balta-Calleja, and H.G. Zachmann, Acta Polym. 44, 18 (1993).

    Article  CAS  Google Scholar 

  6. L. Hardy, I. Stevenson, G. Boiteux, G. Seytre, and A. Schönhals, Polymer 42, 5679 (2001).

    Article  CAS  Google Scholar 

  7. J.C. Canadas, J.A. Diego, J. Sellars, M. Mudarra, and J. Belana, Polymer 41, 8393 (2000).

    Article  CAS  Google Scholar 

  8. J.C. Cañadas, J.A. Diego, J. Sellarès, M. Mudarra, J. Belana, R. Díaz-Calleja, and M.J. Sanchis, Polymer 41, 2899 (2000).

    Article  Google Scholar 

  9. M.S. Graff and R.H. Boyd, Polymer 35, 1797 (1994).

    Article  CAS  Google Scholar 

  10. E. Suljovrujic, M. Micic, and D. Milicevic, J. Eng. Fibers Fabr. 8, 131 (2013).

    CAS  Google Scholar 

  11. L. Hardy, I. Stevenson, A. Fritz, G. Boiteux, G. Seytre, and A. Schönhals, Polymer 44, 4311 (2003).

    Article  CAS  Google Scholar 

  12. G. Williams, Electric Phenomena in Polymer Science. Advances in Polymer Science, Vol. 33 (Berlin: Springer, 1979).

    Google Scholar 

  13. R.H. Boyd, Polymer 26, 1123 (1985).

    Article  CAS  Google Scholar 

  14. A. Schönhals and F. Kremer, Broadband Dielectric Spectroscopy, ed. F. Kremer and A. Schönhals (Heidelberg: Springer, 2003), p. 35.

    Chapter  Google Scholar 

  15. Y. Feldman, A. Puzenko, Y. Ryabov, Fractals, Diffusion, and Relaxation in Disordered Complex Systems, Advances in Chemical Physics, Part A, vol. 133, ed. W.T. Coffey Yuri and P. Kalmykov (John Wiley & Sons, Hoboken, NJ, 2005), pp.␣1–125

  16. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981).

    Article  CAS  Google Scholar 

  17. S. Buchner, D. Wiswe, and H.G. Zachmann, Polymer 30, 480 (1989).

    Article  CAS  Google Scholar 

  18. A. Andersson, W. Zhai, J. Yu, J. He, and F.H.J. Maurer, Polymer 51, 146 (2010).

    Article  CAS  Google Scholar 

  19. M. Cakmak, Y.D. Wang, and M. Simhambhatla, Polym. Eng. Sci. 30, 721 (1990).

    Article  CAS  Google Scholar 

  20. J. Liu, G. Sidoti, J.A. Hommema, P.H. Geil, J.C. Kim, and M. Cakmak, J. Macromol. Sci. B 37, 567 (1998).

    Article  Google Scholar 

  21. N. Vasanthan and D.R. Salem, Macromolecules 32, 6319 (1999).

    Article  CAS  Google Scholar 

  22. I. Ouchi, M. Hosoi, and S. Shimotsuma, J. Appl. Polym. Sci. 21, 3445 (1977).

    Article  CAS  Google Scholar 

  23. F. Kimura, T. Kimura, A. Sugisaki, M. Komatsu, H. Sata, and E. Ito, J. Polym. Sci. B Polym. Phys. 35, 2741 (1997).

    Article  CAS  Google Scholar 

  24. J.J. Martinez-Vega, N. Zouzou, J. Guastavino and L. Boudou, in IEEE 7th International Conference on Solid Dielectrics (2001)

  25. J.P. Bellomo, T. Lebey, J.M. Oraison, and F. Peltier, in IEEE 5th international Conference on Conduction and Breakdown in Solid Dielectrics (1995), pp. 442–446.

  26. K.C. Kao, Dielectric Phenomena in Solids With Emphasis on Physical Concepts of Electronic Processes (San Diego: Elsevier, 2004).

    Google Scholar 

  27. G. Raju, Dielectrics in Electric Fields (Boca Raton: CRC Press, 2003) https://doi.org/10.1201/9780203912270.

    Book  Google Scholar 

  28. C. Hakme, 1. Stevenson, L. David, B. Sixou, A. Voice, G. Seytre, G. Boiteux, in Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, ICSD (2004), Toulouse, France, pp. 37–40

  29. J.J. Martinez-vega, N. Zouzou, J. Guastavino, and L. Boudou, in IEEE 7th International Conference on Solid Dielectrics (2001), pp. 171–174

  30. M.E. Reyes-Melo, J.J. Martínez-Vega, C.A. Guerrero-Salazar, and U. Ortiz-Méndez, J. Appl. Polym. Sci. 102, 3354 (2006).

    Article  CAS  Google Scholar 

  31. E. Passaglia, Polym. Eng. Sci. 4, 169 (1964).

    Article  CAS  Google Scholar 

  32. O. Becker, G. Simon, T. Rieckmann, J. Forsythe, R. Rosu, S. Völker, and M. O’Shea, Polymer 42, 1921 (2001).

    Article  CAS  Google Scholar 

  33. J.C. Canadas, J.A. Diego, M. Mudarra, J. Belana, R. Diaz-Calleja, M.J. Sanchis, and C. Jaimés, Polymer 40, 1181 (1999).

    Article  CAS  Google Scholar 

  34. Z. Denchev, I. Šics, A. Nogales, and T. A. Ezquerra. In: Fakirov, S. (ed.) Handbook of Thermoplastic Polyesters (2005). https://doi.org/10.1002/3527601961.ch11b

  35. J. Sadanobu and H. Inata, The properties of poly(ethylene naphthalate) (PEN) and its application.Science and Technology of Polymers and Advanced Materials: Emerging Technologies and Business Opportunities, ed. P.N. Prasad, J.E. Mark, S.H. Kandil, and Z.H. Kafafi (Boston, MA: Springer, 1998), pp. 141–151.

    Chapter  Google Scholar 

  36. A.S.I. Stevenson, L. Hardy, G. Boiteux, G. Seytre, in Dielectric Materials, Measurements and Applications Conference Publication, vol. 473 (2000), pp. 363–368

  37. C. Abdi, M.W. Khemici, N. Doulache, and IEEE Trans, Dielectr. Electr. Insul. 22, 1406 (2015).

    Article  CAS  Google Scholar 

  38. A. Nada, M. Dawy, and A.H. Salama, Mater. Chem. Phys. 84, 205 (2004).

    Article  CAS  Google Scholar 

  39. F. Kato, S. Omori, M. Matsushita, and Y. Ohki, in IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO (2006), pp. 15–18.

  40. S. Chisca, V.E. Musteata, I. Sava, and M. Bruma, Eur. Polym. J. 47, 1186 (2011).

    Article  CAS  Google Scholar 

  41. A.N. Papathanassiou, J. Non-Cryst. Solids 352, 5444 (2006).

    Article  CAS  Google Scholar 

  42. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, and K.A. Mauritz, J. Polym. Sci. B Polym. Phys. 54, 1918 (2016).

    Article  CAS  Google Scholar 

  43. F. Benabed, T. Seghier, S. Boudraa, A. Seghiour, M.B. Taouti, and S.F. Chabira, Eur. J. Electr. Eng. 18, 79 (2016).

    Article  Google Scholar 

  44. Z. Lu, J.P. Bonnet, J. Ravez, and P. Hagenmuller, Solid State Ionics 57, 235 (1992).

    Article  CAS  Google Scholar 

  45. M.P. Dasari, K. Sambasiva Rao, P. Murali Krishna, and G. Gopala Krishna, Acta Phys. Pol. A 119, 387 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the laboratory of LAPLACE at the Paul Sabatier University of Toulouse, which enabled the realization of all the tests. The authors also thank all the members of the laboratory for their moral contribution and material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Benabed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabed, F., Seghier, T., Boudraâ, S. et al. Dielectric Relaxation and Alternating-Current Conductivity of Highly Crystalline Poly (ethylene-2,6-naphthalenedicarboxylate) Films. J. Electron. Mater. 49, 4069–4075 (2020). https://doi.org/10.1007/s11664-020-08161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08161-3

Keywords

Navigation