Skip to main content
Log in

Effect of Doping and Annealing on Thermoelectric Properties of Bismuth Telluride Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work investigates the thermoelectric and electrical performance of nanostructured thin films of antimony (Sb)-doped Bi2Te3 (thickness ∼ 60 nm) and Bi0.5Sb1.5Te3 (thickness ∼ 60 nm). The films were deposited on a glass substrate by thermal evaporation under high vacuum conditions. The structure and morphology of the films was investigated by standard characterization techniques. X-ray diffraction was used to identify the formation of different phases during the synthesis of the films. The Van der Pauw and Harman methods were employed to measure the conductivity (σ) and figure of merit (ZT). Further, samples were subjected to annealing under a high vacuum at 200°C for 1 h to improve the quality and ZT of the deposited films. The Sb-doped Bi2Te3 film was found to be ∼ 6.5 times more conductive than the Bi0.5Sb1.5Te3 film. However, the two films exhibited comparable ZT values owing to the small value of the Seebeck coefficient (S) of Sb. This study represents a significant contribution in the field of thermoelectric materials and device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.J. Gross, G.S. Hwang, B. Huang, H. Yang, N. Ghafouri, H. Kim, R.L. Peterson, C. Uher, M. Kaviany, and K. Najafi, J. Microelectromech. Syst. 20, 1201–1210 (2011).

    Article  CAS  Google Scholar 

  2. X. Zhang and L.D. Zhao, J. Mater. 1, 92–105 (2015).

    Google Scholar 

  3. D. Xu, Y. Wang, B. Xiong, and T. Li, Mech. Eng. 12, 557–566 (2017).

    Google Scholar 

  4. D.J. Yao, G. Chen, and C.J. Kim, Nanoscale Microscale Thermophys. Eng. 14, 95–109 (2010).

    Article  CAS  Google Scholar 

  5. Z. Wang, M. Li, L. Yang, Z. Zhang, and X.P.A. Gao, Nano Res. 10, 1872–1879 (2017).

    Article  CAS  Google Scholar 

  6. F. Ahmad, R. Singh, P.K. Misra, N. Kumar, R. Kumara, and P. Kumar, J. Electron. Mater. 47, 6972–6983 (2018).

    Article  CAS  Google Scholar 

  7. J. Li, J. Shen, Z. Ma, and K. Wu, Sci. Rep. 7, 8914 (2017).

    Article  CAS  Google Scholar 

  8. G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments, 2001st ed. (Berlin: Springer, 2013).

    Google Scholar 

  9. D.M. Rowe, Thermoelectrics handbook: macro to nano (New York: CRC Press/Taylor & Francis, 2006).

    Google Scholar 

  10. P. Ghaemi, R.S.K. Mong, and J.E. Moore, Phys. Rev. Lett. 105, 166603 (2010).

    Article  CAS  Google Scholar 

  11. Y. Xu, Z. Gan, and S.C. Zhang, Phys. Rev. Lett. 112, 226801 (2014).

    Article  CAS  Google Scholar 

  12. Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, P.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, and Z. Hussain, Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  13. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nat. Phys. 325, 178–181 (2009).

    Google Scholar 

  14. Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.K. Shih, M.Z. Hasan, and Y.P. Chen, Nat. Phys. 10, 956–963 (2014).

    Article  CAS  Google Scholar 

  15. Y.N. Zhang, J. Chem. Phys. 143, 151101 (2015).

    Article  CAS  Google Scholar 

  16. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, and R.J. Cava, Phys. Rev. B- Condens. Matter Mater. Phys. 79, 195208 (2009).

    Article  CAS  Google Scholar 

  17. C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, J. Zhang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X. Dai, Z. Fang, and X.J. Zhou, Proc. Natl. Acad. Sci. 109, 3694–3698 (2012).

    Article  CAS  Google Scholar 

  18. M.T. Pettes, J. Maassen, I. Jo, M.S. Lundstrom, and L. Shi, Nano Lett. 13, 5316–5322 (2013).

    Article  CAS  Google Scholar 

  19. B.M. Fregoso and S. Coh, J. Phys.: Condens. Matter 27, 422001 (2015).

    Google Scholar 

  20. Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, and X. Zhao, NPG Asia Mater. 8, e302 (2016).

    Article  CAS  Google Scholar 

  21. S. Li, H.M.A. Soliman, J. Zhou, M.S. Toprak, M. Muhammed, D. Platzek, P. Ziolkowski, and E. Müller, Chem. Mater. 20, 4403–4410 (2008).

    Article  CAS  Google Scholar 

  22. F. Li, R. Zhai, Y. Wu, Z. Xu, X. Zhao, and T. Zhu, J. Mater. 4, 208–214 (2018).

    CAS  Google Scholar 

  23. K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017).

    Article  CAS  Google Scholar 

  24. M.T. Pettes, J. Kim, W. Wu, K.C. Bustillo, and L. Shi, APL Mater. 4, 104810 (2016).

    Article  CAS  Google Scholar 

  25. H.J. Goldsmid, Materials 7, 2577–2592 (2014).

    Article  CAS  Google Scholar 

  26. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 6, 705–709 (2009).

    Google Scholar 

  27. D. Kong, Y. Chen, J.J. Cha, Q. Zhang, J.G. Analytis, K. Lai, Z. Liu, S.S. Hong, K.J. Koski, S.K. Mo, Z. Hussain, I.R. Fisher, Z.X. Shen, and Y. Cui, Nat. Nanotechnol. 460, 1101–1105 (2011).

    Google Scholar 

  28. J. Zhang, C.Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.K. Xue, X. Ma, and Y. Wang, Nat. Commun. 2, 574 (2011).

    Article  CAS  Google Scholar 

  29. S.K. Pundir, S. Singh, A.K. Srivastava, M.K. Dalai, and R. Kumar, Adv. Sci. Eng. Med. 5, 436–442 (2014).

    Article  CAS  Google Scholar 

  30. N.W. Park, T.H. Park, J.Y. Ahn, S.H. Kang, W.Y. Lee, Y.G. Yoon, S.G. Yoon, and S.K. Lee, AIP Adv. 20, 4403–4410 (2016).

    Google Scholar 

  31. N.W. Park, W.Y. Lee, J.E. Hong, T.H. Park, S.G. Yoon, H. Im, H.S. Kim, and S.K. Lee, Nanoscale Res. Lett. 10, 20 (2015).

    Article  CAS  Google Scholar 

  32. M. Takashiri, K. Imai, M. Uyama, H. Hagino, S. Tanaka, K. Miyazaki, and Y. Nishi, J. Appl. Phys. 115, 214311 (2014).

    Article  CAS  Google Scholar 

  33. Y. Hosokawa, K. Wada, M. Tanaka, K. Tomita, and M. Takashiri, Jpn. J. Appl. Phys. 57, 02CC02 (2018).

    Article  Google Scholar 

  34. J.X. Zhang, Q. Li, P.J. Niu, Q.X. Yang, B.M. Tan, X.H. Niu, and B.H. Gao, Mater. Res. Innov. 19, 408–412 (2015).

    CAS  Google Scholar 

  35. D. Takemori, M. Okuhata, and M. Takashiri, ECS Trans. 75, 123–131 (2017).

    Article  CAS  Google Scholar 

  36. J.M. Lin, Y.C. Chen, and C.P. Lin, J. Nanomater. 2013, 201017 (2013).

    Google Scholar 

  37. A. Kawahira, H. Yamamuro, and M. Takashiri, J. Adv. Sci. 30, 30103 (2018).

    Article  Google Scholar 

  38. O. Madelung, U. Rössler, and M. Schulz, Subvolume C, Non-tetrahedrally bonded elements and binary compounds I of Vol. 41C ‘Semiconductors’ of Landolt-Börnstein—Group III Condensed Matter (SpringerMaterials, Berlin, Heidelberg, 2005) https://materials.springer.com/lb/docs/sm_lbs_978-3-540-31360-1_1141. Accessed 24 November 2019.

  39. J. Tan, K. Kalantar-Zadeh, W. Wlodarski, S. Bhargava, D. Akolekar, A. Holland, and G. Rosengarten: in Microtechnologies for the New Millennium (1 July 2005), Proceedings Volume 5836, Smart Sensors, Actuators, and MEMS II, Sevilla, Spain (2005).

  40. L. Song, J. Zhang, and B.B. Iversen, J. Mater. Chem. A. 7, 17981–17986 (2019).

    Article  CAS  Google Scholar 

  41. X. Wang, H. He, N. Wang, and L. Miao, Appl. Surf. Sci. 276, 539–542 (2013).

    Article  CAS  Google Scholar 

  42. F. Serrano-Sánchez, M. Gharsallah, N.M. Nemes, N. Biskup, M. Varela, J.L. Martínez, M.T. Fernández-Díaz, and J.A. Alonso, Sci. Rep. 7, 6277 (2017).

    Article  CAS  Google Scholar 

  43. B. Poudel, Y. Ma, Y. Lan, B. Yu, X. Yan, D. Wang, Z. Ren, Q. Hao, A. Minnich, A. Muto, D. Vashaee, X. Chen, G. Chen, J. Liu, and M.S. Dresselhaus, Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  44. World Intellectual Property Organization (WIPO)/Patent Cooperation Treaty (PCT). Bismuth antimony telluride nano-bulk composites with high Figures of merit (ZT). International Application Number: PCT/US2013/042537 (2014). https://patentimages.storage.googleapis.com/ff/49/fc/d4493ce14a15bc/WO2014051709A1.pdf Accessed 24 November 2019.

Download references

Acknowledgments

The authors extend their gratitude to DST, Govt. of India, for lending of required monetary support to complete this work. The authors would also like to thank CSIR-NPL for providing access to carry out research work. The authors thank Professor K.G. Suresh from IIT Bombay, Mumbai (India) and Dr. Rupam Goswami from the School of Engineering, Tezpur University, Napaam, Assam (India) for help in proofreading the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachana Kumar or Pramod Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by the DST, Govt. of India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Singh, S., Pundir, S.K. et al. Effect of Doping and Annealing on Thermoelectric Properties of Bismuth Telluride Thin Films. J. Electron. Mater. 49, 4195–4202 (2020). https://doi.org/10.1007/s11664-020-08126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08126-6

Keywords

Navigation