Skip to main content
Log in

Low-Power Efficient p+ Si0.7Ge0.3 Pocket Junctionless SGTFET with Varying Operating Conditions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A new low-power Si1−xGex pocket junctionless single-gate tunnel field-effect transistor (JLSGTFET) is designed to achieve steep subthreshold performance and a better ION/IOFF ratio (∼ 108) in sub-20-nanometer technology node. The mole fraction of Ge represented by x is kept at 0.3 for the SiGe pocket region. The proposed JLSGTFET shows better performance with a Ge mole fraction value x = 0.3. The mole fraction value affects various electrical parameters in terms of leakage current, junction capacitance and transconductance of the channel region. The device exhibits reduced switching capacitance due to the smaller-bandgap pocket region between the source and channel. Analysis of the JLSGTFET is carried out for DC and AC parameters at room temperature. Temperature analysis plays a vital role in determining reliable ON- and OFF-state performance in transistors. Therefore, the proposed pocket JLSGTFET is investigated under harsh temperature conditions to characterize the performance for DC and subthreshold parameters. The sensitivity of the device is analyzed under different temperature conditions over a range of 250–400 K to observe subthreshold performance including transfer characteristics, output characteristics, ION/IOFF ratio, subthreshold slope (SS) and drain-induced barrier lowering (DIBL). The JLSGTFET demonstrates a small variation in DC and subthreshold parameters, indicating good prospects for future analog and digital applications. All the analysis of the proposed JLSGTFET is carried out on a 2D/3D VisualTCAD device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, T. Mudge, Proc. IEEE98, 253–266 (2010)

    Article  Google Scholar 

  2. S. Datta, H. Liu, V. Narayanan, Microelectron. Reliab. 54, 861–874 (2014)

    Article  Google Scholar 

  3. A.C. Seabaugh, Q. Zhang, Proc. IEEE98, 2095–2110 (2010)

    Article  CAS  Google Scholar 

  4. R. Gandhi, Z. Chen, N. Singh, K. Banerjee, S. Lee, IEEE Electron Device Lett. 32, 1504–1506 (2011)

    Article  CAS  Google Scholar 

  5. A.M. Ionescu, H. Riel, Nature479, 329–337 (2011)

    Article  CAS  Google Scholar 

  6. J.K. Mamidala, R. Vishnoi, and P. Pandey, Tunneling Field-Effect Transistors (TFET) (West Sussex: Wiley, 2016)

  7. N. Thomas, W.P. Fei, H. Walter, D.S. Landsiedel, ISCAS (IEEE, 2004), pp. 713–716

  8. C. Sahu, J. Singh, IEEE Electron Device Lett. 35, 411–413 (2014)

    Article  CAS  Google Scholar 

  9. K. Tomioka, M. Yoshimura, T. Fukui, Proceedings VLSI Technology (VLSIT) Symposium, Honolulu, HI, USA, 2012, pp. 47–48

  10. E.A. Uygar, S. Hasan, D.E. Nikonov, R. Rios, K. Kuhn, Proceedings of VLSI Technology (VLSIT) Symposium, Honolulu, HI, USA, 2012, pp. 183–184

  11. B. Ganjipour, J. Wallentin, M.T. Borgström, L. Samuelson, C. Thelander, ACS Nano6, 3109–3113 (2012)

    Article  CAS  Google Scholar 

  12. S.B. Rahi, B. Ghosh, B. Bishnoi, J. Semicond. 36, 034002 (2015)

    Article  Google Scholar 

  13. M. Abedini, S.A.S. Ziabari, A. Eskandarian, Int. Nano Lett. 8, 277–286 (2018)

    Article  CAS  Google Scholar 

  14. N. Guenifi, S.B. Rahi, T. Ghodbane, Mater. Focus7, 1–7 (2018)

    Article  Google Scholar 

  15. M.J. Kumar, J. Sindhu, IEEE Electron Device Lett60, 3285–3290 (2013)

    Article  CAS  Google Scholar 

  16. S. Gundapaneni, M. Bajaj, R.K. Pandey, K.V.R. Murali, S. Ganguly, A. Kottantharayil, IEEE Trans. Electron Devices59, 1023–1029 (2012)

    Article  CAS  Google Scholar 

  17. P.C. Hoon, K.M. Dong, K.K. Hyun, B.R. Hyun, S.C. Woo, B.C. Ki, P. Sooyoung, M.J. Deen, J.Y. Ha, L.J. Soo, Solid State Electron. 73, 7–10 (2012)

    Article  Google Scholar 

  18. S. Sahay, M.J. Kumar, IEEE J. Electron Devices Soc. 4, 110–115 (2016)

    Article  CAS  Google Scholar 

  19. Z. Luo, H. Wang, N. An, Z. Zhu, IEEE Electron Device Lett. 36, 966–968 (2015)

    Article  CAS  Google Scholar 

  20. H. Wang, Z. Luo, H. Yin, H. Zhu, J. Liu, Z. Zhu, ECS Trans. 34, 107–111 (2011)

    Article  Google Scholar 

  21. A. Kranti, R. Yan, C.W. Lee, I. Ferain, R. Yu, N.D. Akhavan, P. Razavi, J.P. Colinge, Proceedings of the ESSDERC Conference, 2010, pp. 357–360

  22. A. Vandooren, R. Rooyakers, D. Leonelli, A. Hikavyy, K. Devriendt, M. Demand, R. Loo, G. Groeseneken, C. Huyghebaert, Solid State Electron. 83, 50–55 (2013)

    Article  CAS  Google Scholar 

  23. W. Li, H. Liu, S. Wang, S. Chen, Z. Yang, Nanoscale Res. Lett. 12(1), 198 (2017)

    Article  Google Scholar 

  24. S.L. Tripathi, R. Patel, V.K. Agrawal, Turk. J. Electr. Eng. Comput. Sci. 27(4), 2466–2474 (2019)

    Article  Google Scholar 

  25. A. Lahgere, M.J. Kumar, IEEE Trans. Electron Devices64(8), 3470–3475 (2017)

    Article  CAS  Google Scholar 

  26. R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-Orabi, K. Kuhn, IEEE Electron Device Lett. 32, 1170–1172 (2011)

    Article  Google Scholar 

  27. R. Saha, B. Bhowmick, S. Baishya, Silicon11, 209–219 (2019)

    Article  CAS  Google Scholar 

  28. S.L. Tripathi, S.K. Sinha, G.S. Patel, S. Awasthi, IEEE EDKCON, 2019, pp. 161–165

  29. R. Narang, M. Saxena, R.S. Gupta, M. Gupta, Superlattices Microstruct. 12, 951–957 (2013)

    Article  CAS  Google Scholar 

  30. M. Rao, R. Ranjan, K.P. Pradhan, L. Artola, P.K. Sahu, IEEE Trans. Nanotechnol. 97, 70–77 (2016)

    Article  Google Scholar 

  31. S. Chander, S.K. Sinha, S. Kumar, P.K. Singh, K. Baral, K. Singh, S. Jit, Superlattices Microstruct. 110, 162–170 (2017)

    Article  CAS  Google Scholar 

  32. K.-H. Kao, S.V. Anne, G.V. William, S. Bart, G. Guido, D.M. Kristin, IEEE Trans. Electron Devices59(2), 292–301 (2012)

    Article  CAS  Google Scholar 

  33. S.L. Tripathi, G.S. Patel, Wirel. Pers. Commun. (2019). https://doi.org/10.1007/s11277-019-06978-8

    Article  Google Scholar 

  34. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, IEEE Trans. Electron Devices56, 2092–2098 (2009)

    Article  CAS  Google Scholar 

  35. Y. Yang, X. Tong, L.-T. Yang, P.-F. Guo, L. Fan, Y.-C. Yeo, IEEE Electron Device Lett. 31, 752–754 (2010)

    Article  CAS  Google Scholar 

  36. A. Mallik, A. Chattopadhyay, IEEE Trans. Electron Device59, 888–894 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Lata Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.L., Sinha, S.K. & Patel, G.S. Low-Power Efficient p+ Si0.7Ge0.3 Pocket Junctionless SGTFET with Varying Operating Conditions. J. Electron. Mater. 49, 4291–4299 (2020). https://doi.org/10.1007/s11664-020-08145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08145-3

Keywords

Navigation