Skip to main content
Log in

Anatomical ACL Reconstruction can Restore the Natural Knee Kinematics than Isometric ACL Reconstruction During the Stance Phase of Walking

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The attachment locations of anterior cruciate ligament (ACL) grafts during reconstruction have been reported to influence knee joint function. However, there are controversial opinions on femoral ACL attachment locations for restoring normal knee kinematics. The knee stability and ACL force by different ACL attachment locations could be predicted using the musculoskeletal model simulation. The objectives of this study are to develop a detailed musculoskeletal knee model and to quantify the effect of ACL graft attachment locations on knee kinematics and graft force. Five normal subjects walked at a self-selected speed, and motion data were captured. A detailed knee model including 14 ligaments was developed for dynamics simulation using cadaveric specimen data, which were previously published and are open to public access. The ACL bundles of the model were removed and replaced with ACL grafts to develop anatomical and isometric ACL-reconstructed knee models; the femoral anatomical footprint and isometric locations were used, respectively. After the knee models were embedded in a full-body template model from the AnyBody Managed Model Repository, the full-body musculoskeletal model was simulated using the measured gait data. The isometric reconstruction model had significantly large anterior translation and internal rotation than the intact and anatomical reconstruction model. The average differences between the isometric reconstruction and intact models were 4.5 mm and 3.0° for tibial anterior translation and internal rotation, respectively. The ACL tensional force in the isometric reconstruction model was significantly lower than that in the intact model. Anatomical reconstruction could closely restore the normal knee kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abebe, E. S., Kim, J. P., Utturkar, G. M., Taylor, D. C., Spritzer, C. E., Moorman, C. T., 3rd, et al. (2011). The effect of femoral tunnel placement on ACL graft orientation and length during in vivo knee flexion. Journal of Biomechanics,44(10), 1914–1920.

    Google Scholar 

  2. Ajuied, A., Wong, F., Smith, C., Norris, M., Earnshaw, P., Back, D., et al. (2014). Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: A systematic review and meta-analysis. American Journal of Sports Medicine,42(9), 2242–2252.

    Google Scholar 

  3. Harner, C. D., Baek, G. H., Vogrin, T. M., Carlin, G. J., Kashiwaguchi, S., & Woo, S. L. Y. (1999). Quantitative analysis of human cruciate ligament insertions. Arthroscopy: The Journal of Arthroscopic and Related Surgery,15(7), 741–749.

    Google Scholar 

  4. Huynh, L. M., & Kim, Y. H. (2013). A computer-aided and robot-assisted surgical system for reconstruction of anterior cruciate ligament. International Journal of Precision Engineering and Manufacturing,14(1), 49–54.

    Google Scholar 

  5. Kopf, S., Musahl, V., Tashman, S., Szczodry, M., Shen, W., & Fu, F. H. (2009). A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surgery, Sports Traumatology, Arthroscopy,17(3), 213–219.

    Google Scholar 

  6. Markolf, K. L., Jackson, S. R., & McAllister, D. R. (2010). A comparison of 11 o’clock versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed knee: Knee kinematics during a simulated pivot test. American Journal of Sports Medicine,38(5), 912–917.

    Google Scholar 

  7. Scanlan, S. F., Blazek, K., Chaudhari, A. M. W., Safran, M. R., & Andriacchi, T. P. (2009). Graft orientation influences the knee flexion moment during walking in patients with anterior cruciate ligament reconstruction. American Journal of Sports Medicine,37(11), 2173–2178.

    Google Scholar 

  8. Steiner, M. E., Murray, M. M., & Rodeo, S. A. (2008). Strategies to improve anterior cruciate ligament healing and graft placement. American Journal of Sports Medicine,36(1), 176–189.

    Google Scholar 

  9. Driscoll, M. D., Isabell, G. P., Jr., Conditt, M. A., Ismaily, S. K., Jupiter, D. C., Noble, P. C., et al. (2012). Comparison of 2 femoral tunnel locations in anatomic single-bundle anterior cruciate ligament reconstruction: A biomechanical study. Arthroscopy: The Journal of Arthroscopic and Related Surgery,28(10), 1481–1489.

    Google Scholar 

  10. Kato, Y., Ingham, S. J., Kramer, S., Smolinski, P., Saito, A., & Fu, F. H. (2010). Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Knee Surgery, Sports Traumatology, Arthroscopy,18(1), 2–10.

    Google Scholar 

  11. Rayan, F., Nanjayan, S. K., Quah, C., Ramoutar, D., Konan, S., & Haddad, F. S. (2015). Review of evolution of tunnel position in anterior cruciate ligament reconstruction. World Journal of Orthopedics,6(2), 252–262.

    Google Scholar 

  12. Guler, O., Mahrogullari, M., Mutlu, S., Cerci, M. H., Seker, A., & Cakmak, S. (2016). Graft position in arthroscopic anterior cruciate ligament reconstruction: Anteromedial versus transtibial technique. Archives of Orthopaedic and Trauma Surgery,136(11), 1571–1580.

    Google Scholar 

  13. Illingworth, K. D., Hensler, D., Working, Z. M., Macalena, J. A., Tashman, S., & Fu, F. H. (2011). A simple evaluation of anterior cruciate ligament femoral tunnel position the inclination angle and femoral tunnel angle. American Journal of Sports Medicine,39(12), 2611–2618.

    Google Scholar 

  14. Shafizadeh, S., Balke, M., Hagn, U., Hoeher, J., & Banerjee, M. (2014). Variability of tunnel positioning in ACL reconstruction. Archives of Orthopaedic and Trauma Surgery,134(10), 1429–1436.

    Google Scholar 

  15. Loh, J. C., Fukuda, Y., Tsuda, E., Steadman, R. J., Fu, F. H., & Woo, S. L. Y. (2003). Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy: The Journal of Arthroscopic and Related Surgery,19(3), 297–304.

    Google Scholar 

  16. Musahl, V., Plakseychuk, A., VanScyoc, A., Sasaki, T., Debski, R. E., McMahon, P. J., et al. (2005). Varying femoral tunnels between the anatomical footprint and isometric positions—Effect on kinematics of the anterior cruciate ligament-reconstructed knee. American Journal of Sports Medicine,33(5), 712–718.

    Google Scholar 

  17. Scopp, J. M., Jasper, L. E., Belkoff, S. M., & Moorman, C. T. (2004). The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy: The Journal of Arthroscopic and Related Surgery,20(3), 294–299.

    Google Scholar 

  18. Jung, Y., Koo, Y. J., & Koo, S. (2017). Simultaneous estimation of ground reaction force and knee contact force during walking and squatting. International Journal of Precision Engineering and Manufacturing,18(9), 1263–1268.

    Google Scholar 

  19. Son, J., Kim, S., Ahn, S., Ryu, J., Hwang, S., & Kim, Y. (2012). Determination of the dynamic knee joint range of motion during leg extension exercise using an EMG-driven model. International Journal of Precision Engineering and Manufacturing,13(1), 117–123.

    Google Scholar 

  20. Mansouri, M., Clark, A. E., Seth, A., & Reinbolt, J. A. (2016). Rectus femoris transfer surgery affects balance recovery in children with cerebral palsy: A computer simulation study. Gait and Posture,43, 24–30.

    Google Scholar 

  21. Purevsuren, T., Kim, K., Nha, K. W., & Kim, Y. H. (2016). Evaluation of compressive and shear joint forces on medial and lateral compartments in knee joint during walking before and after medial open-wedge high tibial osteotomy. International Journal of Precision Engineering and Manufacturing,17(10), 1365–1370.

    Google Scholar 

  22. Reinbolt, J. A., Haftka, R. T., Chmielewski, T. L., & Fregly, B. J. (2008). A computational framework to predict post-treatment outcome for gait-related disorders. Medical Engineering and Physics,30(4), 434–443.

    Google Scholar 

  23. Shelburne, K. B., Pandy, M. G., & Torry, M. R. (2004). Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. Journal of Biomechanics,37(3), 313–319.

    Google Scholar 

  24. Shelburne, K. B., Pandy, M. G., Anderson, F. C., & Torry, M. R. (2004). Pattern of anterior cruciate ligament force in normal walking. Journal of Biomechanics,37(6), 797–805.

    Google Scholar 

  25. Harris, M. D., Cyr, A. J., Ali, A. A., Fitzpatrick, C. K., Rullkoetter, P. J., Maletsky, L. P., et al. (2016). A combined experimental and computational approach to subject-specific analysis of knee joint laxity. Journal of Biomechanical Engineering-Transactions of the ASME,138(8), 081004.

    Google Scholar 

  26. Baldwin, M. A., Laz, P. J., Stowe, J. Q., & Rullkoetter, P. J. (2009). Efficient probabilistic representation of tibiofemoral soft tissue constraint. Computer Methods in Biomechanics and Biomedical Engineering,12(6), 651–659.

    Google Scholar 

  27. Blankevoort, L., & Huiskes, R. (1991). Ligament–bone interaction in a 3-dimensional model of the knee. Journal of Biomechanical Engineering-Transactions of the ASME,113(3), 263–269.

    Google Scholar 

  28. Li, G., Gil, J., Kanamori, A., & Woo, S. L. Y. (1999). A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering-Transactions of the ASME,121(6), 657–662.

    Google Scholar 

  29. Marra, M. A., Vanheule, V., Fluit, R., Koopman, B. H. F. J. M., Rasmussen, J., Verdonschot, N., et al. (2015). A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. Journal of Biomechanical Engineering-Transactions of the ASME,137(2), 020904.

    Google Scholar 

  30. Wu, G., & Cavanagh, P. R. (1995). Isb recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics,28(10), 1257–1260.

    Google Scholar 

  31. Chan, D. B., Temple, H. T., Latta, L. L., Mahure, S., Dennis, J., & Kaplan, L. D. (2010). A biomechanical comparison of fan-folded, single-looped fascia lata with other graft tissues as a suitable substitute for anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic and Related Surgery,26(12), 1641–1647.

    Google Scholar 

  32. Bernard, M., Hertel, P., Hornung, H., & Cierpinski, T. (1997). Femoral insertion of the ACL radiographic quadrant method. The American Journal of Knee Surgery,10(1), 14–21. (discussion 21-12).

    Google Scholar 

  33. Simon, R. A., Everhart, J. S., Nagaraja, H. N., & Chaudhari, A. M. (2010). A case–control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. Journal of Biomechanics,43(9), 1702–1707.

    Google Scholar 

  34. Brady, M. F., Bradley, M. P., Fleming, B. C., Fadale, P. D., Hulstyn, M. J., & Banerjee, R. (2007). Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. American Journal of Sports Medicine,35(3), 395–403.

    Google Scholar 

  35. Fleming, B. C., Fadale, P. D., Hulstyn, M. J., Shalvoy, R. M., Oksendahl, H. L., Badger, G. J., et al. (2013). The effect of initial graft tension after anterior cruciate ligament reconstruction: A randomized clinical trial with 36-month follow-up. American Journal of Sports Medicine,41(1), 25–34.

    Google Scholar 

  36. Bedi, A., Maak, T., Musahl, V., Citak, M., O’Loughlin, P. F., Choi, D., et al. (2011). Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: Is the tibial tunnel position most important? American Journal of Sports Medicine,39(2), 366–373.

    Google Scholar 

  37. Hoher, J., Kanamori, A., Zeminski, J., Fu, F. H., & Woo, S. L. (2001). The position of the tibia during graft fixation affects knee kinematics and graft forces for anterior cruciate ligament reconstruction. American Journal of Sports Medicine,29(6), 771–776.

    Google Scholar 

  38. Lee, M. C., Seong, S. C., Lee, S., Chang, C. B., Park, Y. K., Jo, H., et al. (2007). Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic and Related Surgery,23(7), 771–778.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project for Research and Development of Police Science and Technology through CRDPST and KNPA (PA-C000001) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1A2B2010763) funded by the Ministry of Science and ICT of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungbum Koo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, YJ., Jung, Y., Seon, J.K. et al. Anatomical ACL Reconstruction can Restore the Natural Knee Kinematics than Isometric ACL Reconstruction During the Stance Phase of Walking. Int. J. Precis. Eng. Manuf. 21, 1127–1134 (2020). https://doi.org/10.1007/s12541-020-00319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00319-7

Keywords

Navigation