Skip to main content
Log in

Analysis of Yield Criteria and Flow Curves on FLC for TWIP900 Steel

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

In this study, the applicability of yield criteria and flow curve models to predict forming limit curve (FLC) via the Marciniak-Kuczynski (M-K) model is investigated for TWIP900 steel. Forming limit characteristics of TWIP900 are determined experimentally and numerically. The yield criteria of Hill48, Barlat89, YLD2000-2d, and BBC2000 are tested and compared with each other. Results indicate that the YLD2000-2d and the BBC2000 yield criteria are found to be more accurate than the other criteria. The YLD2000 criterion has the best prediction capability with the Krupskowsky flow curve while the BBC2000 model has the best prediction with the Ludwick flow curve model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Worldautosteel: Steel Your Strength. https://www.worldautosteel.org/why-steel/steel-your-strength/ (Accessed 26 May 2019)

  2. Nam, J.B.: Development of new auto steels and application technology. http://309fbf2c62e8221fbaf0-b80c17cbaf20104b072d586b316c6210.r88.cf1.rackcdn.com/Gangzhao%20Presentations/09_China%20Automotive%20Steel%20Conference_POSCO_Jae-Bok%20Nam.pdf (Accessed 2 May 2013). 01.01.2016

  3. Singh MK (2016) Application of steel in automotive industry. Int J Emerging Technol Adv Eng 6(7):246–253

    CAS  Google Scholar 

  4. Schumann VH (1972) Martensitische umwandlung in austenitischen mangan-kohlenstoff-stählen. Neue Hütte 17(10):605–609

    CAS  Google Scholar 

  5. Grässel O, Krüger L, Frommeyer G, Meyer L (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int. J. Plasticity 16(10):1391–1409. https://doi.org/10.1016/S0749-6419(00)00015-2

    Article  Google Scholar 

  6. Jung J, Lee O, Park Y, Kim D, Jin K, Kim S, Song K (2008) Microstructure and mechanical properties of high Mn TWIP steels. Journal of the Korean Institute of Metals and Materials 46(10):627–633. https://doi.org/10.3390/met7120571

    Article  CAS  Google Scholar 

  7. Kilic S, Ozturk F, Sigirtmac T, Tekin G (2015) Effects of pre-strain and temperature on bake hardening of TWIP900CR steel. J Iron Steel Res Int 22(4):361–365. https://doi.org/10.1016/S1006-706X(15)30012-1

    Article  CAS  Google Scholar 

  8. Kiliç S, Öztürk F (2016) Comparison of performances of commercial TWIP900 and DP600 advanced high strength steels in automotive industry. J. Fac. Eng. Archit. GAZI 31(3), 567–578. doi:https://doi.org/10.17341/gummfd.81389

  9. De Cooman B, Chin K, Kim J (2011) High Mn TWIP steels for automotive applications. New Trends and Developments in Automotive System Engineering, InTech, 101–128

  10. Chung K, Ahn K, Yoo D-H, Chung K-H, Seo M-H, Park S-H (2011) Formability of TWIP (twinning induced plasticity) automotive sheets. Int J Plasticity 27(1):52–81. https://doi.org/10.1016/j.ijplas.2010.03.006

    Article  CAS  Google Scholar 

  11. Habibi N, Zarei-Hanzaki A, Abedi H-R (2015) An investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J. Mater. Process Tech. 224(1):102–116. https://doi.org/10.1016/j.jmatprotec.2015.04.014

    Article  CAS  Google Scholar 

  12. Han HN, Kim K-H (2003) A ductile fracture criterion in sheet metal forming process. J. Mater. Process Tech. 142(1):231–238. https://doi.org/10.1016/S0924-0136(03)00587-9

    Article  CAS  Google Scholar 

  13. Lou Y, Huh H (2013) Prediction of ductile fracture for advanced high strength steel with a new criterion: experiments and simulation. J Mater Process Tech 213(8):1284–1302. https://doi.org/10.1016/j.jmatprotec.2013.03.001

    Article  CAS  Google Scholar 

  14. Xu L, Barlat F, Lee M-G (2012) Hole expansion of twinning-induced plasticity steel. Scripta Mater 66(12):1012–1017. https://doi.org/10.1016/j.scriptamat.2012.01.062

    Article  CAS  Google Scholar 

  15. Xu L, Chen L, De Cooman BC, Steglich D, Barlat F (2010) Hole expansion of advanced high strenth steel sheet sample. Int J Mater Form 3(1):247–250. https://doi.org/10.1007/s12289-010-0753-9

    Article  Google Scholar 

  16. Ahn K, Yoo D, Seo MH, Park S-H, Chung K (2009) Springback prediction of TWIP automotive sheets. Met Mater Int 15(4):637–647. https://doi.org/10.1007/s12540-009-0637-z

    Article  Google Scholar 

  17. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 193(1033):281–297

    CAS  Google Scholar 

  18. Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions Int J Plasticity 5(1):51–66. https://doi.org/10.1016/0749-6419(89)90019-3

    Article  Google Scholar 

  19. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheets—part 1: theory. Int. J. Plasticity 19(9):1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0

    Article  CAS  Google Scholar 

  20. Banabic D, Balan T, Comsa DS (2000) A new yield criterion for orthotropic sheet metals under plane-stress conditions. In: proceedings of the 7th conference ‘TPR2000’, Cluj Napoca, Romania, pp. 217–224

  21. Hashimoto K, Kuwabara T, Iizuka E, Yoon JW (2010) Hole expansion simulation of high strength steel sheet. Int J Mater Form 3(1):259–262. https://doi.org/10.1007/s12289-010-0756-6

    Article  Google Scholar 

  22. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transfomation-based anisotropic yield functions. Int. J. Plasticity 21(5):1009–1039. https://doi.org/10.1016/j.ijplas.2004.06.004

    Article  CAS  Google Scholar 

  23. Toros S, Polat A, Ozturk F (2012) Formability and springback characterization of TRIP800 advanced high strength steel. Mater. Design. 41:298–305. https://doi.org/10.1016/j.matdes.2012.05.006

    Article  CAS  Google Scholar 

  24. Ozturk F, Toros S, Kilic S, Kacar I (2014) Evaluation of anisotropy by two different tests for TRIP800 steel. In: key engineering materials, pp. 1139-1144. Trans Tech Publ

  25. Ozturk F, Lee D (2005) Experimental and numerical analysis of out-of-plane formability test. J. Mater. Process Tech. 170(1–2):247–253. https://doi.org/10.1016/j.jmatprotec.2005.05.010

    Article  CAS  Google Scholar 

  26. Asame Co.: Automated Strain Analysis and Measurement Environment. http://www.techlab.fr/ (Accessed 2 Apr 2015). 01.01.2016

  27. Ozturk F, Dilmec M, Turkoz M, Ece RE, Halkaci HS (2009) Grid marking and measurement methods for sheet metal formability. In: the 5th international conference and exhibition on design and production of machines and dies/molds, Turkey, June, pp. 18–21

  28. Tresca H (1864) Memoire sur l'écoulement des solides à de forte pressions. Acad Sci Paris 2(1):59

    Google Scholar 

  29. Mises RV (1913) Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913(1):582–592

    Google Scholar 

  30. Banabic D (2010) Sheet metal forming processes: constitutive modelling and numerical simulation. Springer Berlin Heidelberg, Berlin

  31. Fallahiarezoodar A, Altan T (2015) Determining flow stress data by combining uniaxial tensile and biaxial bulge tests. Stamping Journal 1(1)

  32. Marciniak Z (1965) Stability of plastic shells under tension with kinematic boundary condition. Archiwum Mechaniki Stosorwanej 17(0):577–592

    Google Scholar 

  33. Marciniak Z, Kuczyński K (1967) Limit strains in the processes of stretch-forming sheet metal. Int J Mech Sci 9(9):609–620. https://doi.org/10.1016/0020-7403(67)90066-5

    Article  Google Scholar 

  34. Azrin M, Backofen WA (1970) The deformation and failure of a biaxially stretched sheet. MT 1(10):2857–2865. https://doi.org/10.1007/BF03037824

    Article  Google Scholar 

  35. Banabic D (2010) A review on recent developments of Marciniak-Kuczynski model. Computer Methods in Materials Science 10(4):225–237

    Google Scholar 

  36. Hutchinson JW, Neale KW (1978) Sheet necking-III. Strain-rate effects. In: Koistinen DP, Wang N-M (eds) Mechanics of sheet metal forming: material behavior and deformation analysis. Springer US, Boston, MA, pp 269–285

    Chapter  Google Scholar 

  37. Ghazanfari, A., Assempour, A.: Calibration of forming limit diagrams using a modified Marciniak–Kuczynski model and an empirical law. Mater Design 34(0), 185–191 (2012). doi:https://doi.org/10.1016/j.matdes.2011.07.057

  38. Ozturk F, Toros S, Kilic S (2014) Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel. Procedia Engineering 81(1):760–765. https://doi.org/10.1016/j.proeng.2014.10.073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kilic.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, S., Ozturk, F. & Toros, S. Analysis of Yield Criteria and Flow Curves on FLC for TWIP900 Steel. Exp Tech 44, 597–612 (2020). https://doi.org/10.1007/s40799-020-00382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-020-00382-9

Keywords

Navigation