Skip to main content

Advertisement

Log in

Assessment of Alternanthera sessilis and Aster philippinensis as excluders in a small-scale Cu–Au processing site at Kias, Benguet, Philippines

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In unregulated mining and processing for Cu and Au, large amounts of heavy metals and metalloids are generated as tails. These wasted by-products could actually pose serious environmental problems. The objective of this study was to assess the potential ability of Alternanthera sessilis and Aster philippinensis thriving abundantly in a small-scale mine processing site at Kias, Benguet, for possible Cu, Pb, Zn, and As uptake. It also aimed to determine the cellular localization of the contaminants within the plant biomass. Alternanthera sessilis and Aster philippinensis exhibited low bioaccumulation factor (BF) and translocation factor (TF) values for Cu, Pb, Zn, and As. The BF and TF values could suggest possible exclusion mechanisms of the plants in avoiding phytotoxicity. SEM-EDX analysis of the Alternanthera sessilis roots indicated higher weight % of Cu, Pb, and As in the epidermis, and Zn in the cortex. On the other hand, Aster philippinensis roots showed high weight % of Zn and As in the epidermis and Cu and Pb in the cortex. The localization of the contaminants in the root epidermal and cortical cells signifies restriction of their mobility to the xylem, preventing migration to the shoot system. The findings of this study suggest that Alternanthera sessilis and Aster philippinensis are considered potential phytostabilizers capable of immobilizing contaminant toxicity in the soil and in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaboudi, K., Ahmed, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Science, 63(1), 123–127.

    Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere., 91(7), 869–881.

    CAS  Google Scholar 

  • Angle, J., Baker, A., Whiting, S., & Chaney, R. (2003). Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant and Soil, 256(2), 325–332.

    CAS  Google Scholar 

  • AOAC. (1990). Association of Official Analytical Chemists Official Methods of Analysis 15th ed. Virginia, USA: Journal of Association of Official Agricultural Chemists.

  • Arduini, I., Godbold, D., & Onnis, A. (1996). Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 97(1), 111–117.

    CAS  Google Scholar 

  • Baker A, & Walker P. (1990). Ecophysiology of metal uptake by tolerant plants: heavy metal tolerance in plants. Shaw A. Boca Raton:CRC Press.

  • Balangcod, T., & Balangcod, A. (2011). Ethnomedical knowledge of plants and healthcare practices among the Kalanguya tribe in Tinoc, Ifugao, Luzon, Philippines. Indian Journal of Traditional Knowledge, 10(2), 227–238.

    Google Scholar 

  • Baruah, S., Hazarika, K., & Sarma, K. (2012). Uptake and localization of lead in Eichhornia crassipes grown within a hydroponic system. J Adv Sci Res., 3(1), 51–59.

    CAS  Google Scholar 

  • Bolan, N., Adriano, D., & Naidu, R. (2003). Role of phosphorus in (Im)mobilization and bioavailability of heavy metals in the soil-plant system. J Environ Contam Tox., 177, 1–44.

    CAS  Google Scholar 

  • CAR DILG. (2018). DILG CAR Benguet Profile. [cited 15 October 2018]. Available from: https://www.dilgcar.com/index.php/2015-07-10-07-24-09/province-of-benguet.

  • Carver, B., & Ownby, J. (1995). Acid soil tolerance in wheat. Advances in Agronomy, 54, 117–173.

    CAS  Google Scholar 

  • Chandra, S., & Saha, R. (2018). Assessment of arsenic toxicity and tolerance characteristics of bean plants (Phaseolus Vulgaris) exposed to different species of arsenic. Journal of Plant Nutrition, 41(3), 340–347.

    CAS  Google Scholar 

  • Chao, D., Chen, Y., Chen, J., Shi, S., Chen, Z., & Wang, C. (2014). Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biology, 12(12), e1002009.

    Google Scholar 

  • Christophersen, H., Smith, F., & Smith, S. (2012). Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in Medicago: Glomus mosseae is more effective than G.intraradices, associated with lower expression of root epidermal Pi transporter genes. Frontiers in Physiology, 3(91), 1–13.

    Google Scholar 

  • Claveria, R., De los Santos, C., Teodoro, K., Rellosa, M., & Valera, N. (2010). The identification of metallophytes in the Fe and Cu enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their Implications to Phytoremediation. Sci Diliman., 21(2), 1–12.

    Google Scholar 

  • Claveria, R. J. R., Perez, T. R., Perez, R. E., Algo, J. L., & Robles, P. Q. (2019). The identification of indigenous Cu and As metallophytes in the Lepanto Cu-Au Mine, Luzon,Philippines. Environmental Monitoring and Assessment, 191, 185.

    Google Scholar 

  • Collier, M., Boughter, S., Dameron, M., & Rogstad, S. (2017). Uptake and distribution of copper, lead, and zinc in dandelions (Taraxacum officinale; Asteraceae) sampled from polluted and nonpolluted soils. J Torrey Bot Soc., 144(1), 47–57.

    Google Scholar 

  • Colzi, I., Arnetolia, M., Galloa, A., Doumett, S., & Del Bubba, M. (2012). Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Environmental and Experimental Botany, 78, 91–98.

    CAS  Google Scholar 

  • Dela Torre, J., Claveria, R., Perez, E., Perez, T., & Doronilla, A. (2016). Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines. International Journal of Phytoremediation, 18(5), 435–441.

    Google Scholar 

  • DENR MGB. (2016). Mining facts and figures [Internet]. Diliman, Quezon City. [cited 15 Oct 2018]. Available from: https://www.mgb.gov.ph/images/homepage-images/mining-facts-and-figures.pdf.

  • Dhankher, O., Li, Y., Rosen, B., Shi, J., Salt, D., & Senecoff, J. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nature Biotechnology, 20(11), 1140–1145.

    CAS  Google Scholar 

  • Escarre, J., Lefebre, C., & Raboyeau, S. (2016). Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for Soil Restoration. Water, Air, and Soil Pollution, 216, 485–504.

    Google Scholar 

  • Fashola, M., Ngolo-Jeme, V., & Babalola, O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), e1047.

    Google Scholar 

  • Frey, B., Keller, C., Zierold, K., & Schulin, R. (2000). Distribution of Zn in functionally different epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 23(7), 675–687.

    CAS  Google Scholar 

  • Gajbhiye, S., & Bhalerao, S. (2017). Phytoremediation potential of Alternanthera sessilis L. growing in industrially contaminated environment. Int J Curr Res., 9(1), 44550–44556.

    CAS  Google Scholar 

  • Gilbert, L., Menezes, A., Rodrigues, A., Fernandes, G., Berbara, R., & Marota, H. (2014). Effects of arsenic on the growth, uptake and distribution of nutrients in the tropical species Baccharis dracunculifolia (Asteraceae). European J Toxicol Sci., 1–27.

  • Gupta A. 2014. Alternanthera sessilis. [Internet] The IUCN Red List of Threatened Species. [cited 15 Oct 2018]. Available from: http://www.iucnredlist.org

  • Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Biotechnology, 15, 89–109.

    CAS  Google Scholar 

  • Hamazaki T, & Paningbatan E. (1988). Procedures for soil analysis. Los Banos, Laguna. Department of Soil Science, College of Agriculture, UP Los Banos.

  • Hammond, C., Root, R., Maier, R., & Chorover, J. (2018). Mechanisms of arsenic sequestration by Prosopis juliflora during the phytostabilization of metalliferous mine tailings. Environmental Science & Technology, 52(3), 1156–1164.

    CAS  Google Scholar 

  • Hodson, M. (2012). Metal toxicity and tolerance in plants. Biochemist., 34(5), 28–32.

    CAS  Google Scholar 

  • Hu, P., Qiu, R., Senthilkumar, P., Jiang, D., Chen, Z., Tang, Y., & Liu, F. (2009). Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany, 66(2), 317–325.

    CAS  Google Scholar 

  • Jennings, N. (2018). Small-scale gold mining. [Internet] The Kias gold mine, Philippines. [cited 15 Oct 2018]. Available from: http://www.ilo.org/public/english/dialogue/sector/papers/goldmine/130e2.htm.

  • Jiang, X., & Wang, C. (2008). Zinc distribution and zinc-binding forms in Phragmites australis under zinc pollution. Journal of Plant Physiology, 165(7), 697–704.

    CAS  Google Scholar 

  • Jung, M. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu Mine. Sensors., 8(4), 2413–2423.

    Google Scholar 

  • Kopittke, P., Asher, C., Kopittke, R., & Menzies, N. (2007). Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution, 150(2), 280–287.

    CAS  Google Scholar 

  • Kristensen, L., Taylor, M., & Morrison, L. (2015). Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions. Environmental Science: Processes & Impacts, 17(3), 631–637.

    CAS  Google Scholar 

  • Laghlimi, M., Bouamar, B., Hassan, E., & Abdelha kB. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol., 5(5), 375–388.

    Google Scholar 

  • Lam, E. J., Gálvez, M. E., Cánovas, M., Montofré, I. L., Rivero, D., & Faz, A. (2016). Evaluation of metal mobility from copper mine tailings in northern Chile. Environmental Science and Pollution Research, 23(12), 11901–11915.

    CAS  Google Scholar 

  • Lam, E. J., Cánovas, M., Gálvez, M. E., Montofré, Í. L., Keith, B. F., & Faz, Á. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration, 182, 210–217.

    CAS  Google Scholar 

  • Lam, E. J., Gálvez, M. E., Cánovas, M., Montofré, Í. L., & Keith, B. F. (2018). Assessment of the adaptive capacity of plant species in copper mine tailings in arid and semiarid environments. Journal of Soils and Sediments, 18(6), 2203–2216.

    CAS  Google Scholar 

  • Lidon, F., Ramalho, C., & Henriqu, F. (1993). Copper inhibition of rice photosynthesis. Journal of Plant Physiology, 142(1), 12–17.

    CAS  Google Scholar 

  • Liu, D., & Kottke, I. (2004). Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS). Bioresource Technology, 94(2), 153–158.

    CAS  Google Scholar 

  • Luoma, S. (1983). Bioavailability of trace metals to aquatic organisms-a review. Sci Total Environ., 28(1), 1–22.

    CAS  Google Scholar 

  • Mahar, A., Wang, P., Ali, A., Awasthi, M., Lahori, A., Wang, Q., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety, 126, 111–121.

    CAS  Google Scholar 

  • Masarovicova, E., Kralova, K., & Kummerova, M. (2010). Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiologiae Plantarum, 32, 823–829.

    Google Scholar 

  • McGrath, S., & Zhao, F. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 227–282.

    Google Scholar 

  • Mellem, J., Himansu, B., & Odhav, B. (2009). Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius from contaminated soils. Journal of Environmental Science and Health, 44(6), 568–575.

    CAS  Google Scholar 

  • Mganga, N., & Rulangaranga, R. (2011). Classification of plants according to their heavy metal content around North Mara Gold Mine, Tanzania: implication for phytoremediation. Tanz J Sci., 37(1), 109–119.

    Google Scholar 

  • Michalak I, Marycz K, Basinska K, & Chojnacka K. (2014). Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga Vaucheria sessilis. The Scientific World Journal 2014 (891928): 8 pages, 1, 8.

  • Mingorance, M., Leidi, E., Valdés, B., & Rossini, O. (2012). Evaluation of lead toxicity in Erica andevalensis as an alternative species for revegetation of contaminated soils. International Journal of Phytoremediation, 14(2), 174–185.

    Google Scholar 

  • Moravec, P., Smolik, J., Ondracek, J., Vodicka, P., & Fajgar, R. (2015). Lead and/or lead oxide nanoparticle generation for inhalation experiments. Aerosol Science and Technology, 49(8), 655–665.

    CAS  Google Scholar 

  • Najamuddin & Surahman. (2017). Dispersion, Speciation, and Pollution Assessment of Heavy Metals Pb and Zn in Surface Sediment from Disturbed Ecosystem of Jeneberang Waters. IOP Conf Ser: Earth Environ Sci., 89, 1–13.

  • Neumann, D., Zur Nieden, U., Lichtenberger, O., & Leopold, I. (1995). How does Armeria maritima tolerate high heavy metal concentration? Plant Physiology, 146, 704–717.

    CAS  Google Scholar 

  • Nirola, R., Mallavarapu, T., Aryal, R., Venkateswarlu, K., & Naidu, R. (2015). Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine - a quest for phytostabilisation. J Sust Mining., 14(3), 115–123.

    Google Scholar 

  • Pickering, I., Prince, R., George, M., & George, G. (2000). Reduction and coordination of arsenic in Indian mustard. Plant Physiology, 122(4), 1171–1177.

    CAS  Google Scholar 

  • Pitts L. (2016). Monitoring soil moisture for optimal crop growth [Internet]. Zendesk. [cited 15 Oct 2018]. Available from: https://observant.zendesk.com/hc/en-us/articles/208067926-Monitoring-Soil-Moisture-for-Optimal-Crop-Growth.

  • Pourrut, B., Muhammad, S., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213, 113–136.

    CAS  Google Scholar 

  • Pulford, I., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by tree—a view. Environment International, 29(4), 529–540.

    CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181.

    CAS  Google Scholar 

  • Ratheesh-chandra, P., Abdussalam, A., & Nabeesa, S. (2018). Assessment of phytoremediation potential of wild plants growing in metal contaminated soil. IAETSD JARAS., 5(2), 510–517.

    Google Scholar 

  • Sahi, S., Israr, M., Srivastava, A., Gardea-Torresdey, J., & Parsons, J. (2007). Accumulation, speciation and cellular localization of copper in Sesbania drummondii. Chemosphere., 67(11), 2257–2266.

    CAS  Google Scholar 

  • Salt, D., Smith, R., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49, 643–648.

    CAS  Google Scholar 

  • Samardjieva, K., Tavares, F., & Pissarra, J. (2015). Histological and ultrastructural evidence for zinc sequestration in Solanum nigrum L. Protoplasma., 252(1), 345–357.

    CAS  Google Scholar 

  • Santisteban, J., Mediavilla, R., Lopez-Pamo, E., Dabrio, C., Zapata, M., Garcia, J., & Martinez-Alfaro, P. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32(3), 287–299.

    Google Scholar 

  • Sela, M., Tel-or, E., Fritz, E., & Huttermnn, A. (1988). Localization and toxic effects of cadmium, copper, and uranim in Azolla. Plant Physiology, 88, 30–36.

    CAS  Google Scholar 

  • Seregin, I., Shpigun, L., & Ivanov, V. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51(4), 582–591.

    Google Scholar 

  • Sheoran, V., Sheoran, A., & Poonia, P. (2011). Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Critical Reviews in Environmental Science and Technology, 41(2), 168–214.

    Google Scholar 

  • Sinclair, S., & Kramer, U. (2012). The zinc homeostasis network of land plants. Biochimica et Biophysica Acta, 1823(9), 1553–1567.

    CAS  Google Scholar 

  • Vesk, P., Nockolds, C., & Allaway, W. (1999). Metal localization in water hyacinth roots from an urban wetland environment. Plant, Cell & Environment, 22(2), 149–158.

    Google Scholar 

  • Wang, J., Shi, Q., Zou, J., Jiang, Z., Wang, J., Wu, H., & Liu, D. (2015). Cellular localization of copper and its toxicity on root tips of Hordeum vulgare. Fresenius Environmental Bulletin, 24(7), 2394–2405.

    CAS  Google Scholar 

  • Wierzbicka, M. (2006). Lead accumulation and its translocation barriers in roots of Allium cepa L.-Autoradiographic and ultrastructural studies. Plant, Cell & Environment, 10(1), 17–27.

    Google Scholar 

  • Wuana R, Okieimen F. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology. 1-20.

  • Yang, H., & Jie, Y. (2005). Uptake and transport of calcium in plants. Physiology and Molecular Biology of Plants, 31(3), 227–234.

    CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated site in Florida site. Sci Total Environ., 368(2), 456–464.

    CAS  Google Scholar 

  • Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36(5), 409–430.

    CAS  Google Scholar 

Download references

Acknowledgments

We would also like to extend our gratitude to Mr. Leoncio Na-oy and the small-scale miners in the area for their assistance during the fieldworks. The authors would also like to acknowledge the comments and suggestions of the reviewers which have greatly improved the presentation and content of the paper.

Funding

This research received funding from the Department of Science and Technology Accelerated Science and Technology Human Resource Development Program–National Science Consortium (DOST ASTHRDP-NSC) and Department of Science and Technology Philippine Council for Industry, Energy and Emerging Technology Research and Development (DOST-PCIEERD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Juna R. Claveria.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanqui, E.E.M., Claveria, R.J.R. & Perez, T.R. Assessment of Alternanthera sessilis and Aster philippinensis as excluders in a small-scale Cu–Au processing site at Kias, Benguet, Philippines. Environ Monit Assess 192, 402 (2020). https://doi.org/10.1007/s10661-020-08364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08364-5

Keywords

Navigation