Skip to main content
Log in

A Perspective on the Relationship Between Microstructure and Performance of Cu-Based Zeolites for the Selective Catalytic Reduction of NOx

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Cu-exchanged zeolites are one kind of effective catalysts to eliminate NOx for Selective catalytic reduction with NH3(NH3-SCR) in oxygen-rich exhaust from diesel engines. The microstructure–performance relationships between supports and active sites is crucial to rationally design excellent catalysts for the effective elimination of NOx. Therefore, the effect of topology and element ratio on active species and performance, the new progress in reaction and chemical poisoning mechanism to clarify the nature of the catalytic reactions are reviewed in this article. Furthermore, some new research methods to further promote SCR performance are summarized, which is helping in guiding the rational design of Cu-zeolites catalysts. From the reviewed data, the following important viewpoints emerged: (i) topologies exert different influence on acid properties and the nature of Cu species, which further effect the NH3-SCR performance; (ii) the Si/Al and Cu/Al compositional ratios are key factors in effecting the performance of the Cu-zeolites catalysts; (iii) the degree of chemical inactivation depends on the content and type of impurities; (iv) the common modification methods include the doping of foreign cations or metal oxides and core–shell structures; (v) the active site in the low temperature NH3-SCR catalyst is a mobile transient ion pairs ([(NH3)2CuI-O2-CuI(NH3)2]).Only in the high temperature regime do the NH3-solvated Cu ions decompose to isolated Cu2+ ions that anchor on the zeolite framework and become immobilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pereda-Ayo B, De La Torre U, Illán-Gómez MJ, Bueno-López A, González-Velasco JR (2014) Appl Catal B Environ 147:420–428

    CAS  Google Scholar 

  2. Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF (2013) ACS Catal 3:2083–2093

    CAS  Google Scholar 

  3. Colombo M, Nova I, Tronconi E (2012) Catal Today 197:243–255

    CAS  Google Scholar 

  4. Perezramirez J, Groen J, Bruckner A, Kumar M, Bentrup U, Debbagh M, Villaescusa L (2005) J Catal 232:318–334

    CAS  Google Scholar 

  5. Rizzotto V, Chen P, Simon U (2018) Catalysts 8:162

    Google Scholar 

  6. Leistner K, Mihai O, Wijayanti K, Kumar A, Kamasamudram K, Currier NW, Yezerets A, Olsson L (2015) Catal Today 258:49–55

    CAS  Google Scholar 

  7. Wang H, Xu R, Jin Y, Zhang R (2019) Catal Today 327:295–307

    CAS  Google Scholar 

  8. Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29

    CAS  Google Scholar 

  9. Higgins JB, LaPierre RB, Schlenker JL, Rohrman AC, Wood JD, Kerr GT, Rohrbaugh WJ (1988) Zeolites 8:446–452

    CAS  Google Scholar 

  10. Treacy MMJ, Newsam JM (1988) Nature 332:249–251

    CAS  Google Scholar 

  11. Peng C, Liang J, Peng H, Yan R, Liu W, Wang Z, Wu P, Wang X (2018) Ind Eng Chem Res 57:14967–14976

    CAS  Google Scholar 

  12. Deka U, Lezcano-Gonzalez I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427

    CAS  Google Scholar 

  13. Paolucci C, Khurana I, Parekh AA, Li SC, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357:898–903

    CAS  PubMed  Google Scholar 

  14. Fickel DW, Fedeyko JM, Lobo RF (2010) J Phys Chem C 114:1633–1640

    CAS  Google Scholar 

  15. Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S (2018) Chem Soc Rev 47:8097–8133

    CAS  PubMed  Google Scholar 

  16. Martin N, Boruntea CR, Moliner M, Corma A (2015) Chem Commun 51:11030–11033

    CAS  Google Scholar 

  17. Han S, Cheng J, Ye Q, Cheng S, Kang T, Dai H (2019) Microporous Mesoporous Mater 276:133–146

    CAS  Google Scholar 

  18. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2015) Top Catal 59:278–291

    Google Scholar 

  19. Shin YH, Kweon S, Park MB, Chae HJ (2018) Korean J Chem Eng 35:1433–1440

    CAS  Google Scholar 

  20. Li J, Jin X, Duan H, Ji N, Song C, Liu Q (2015) Procedia Eng 121:967–974

    CAS  Google Scholar 

  21. Wilson ST, Broach RW, Blackwell CS, Bateman CA, McGuire NK, Kirchner RM (1999) Microporous Mesoporous Mater 28:125–137

    CAS  Google Scholar 

  22. Sastre G (2014) Catal Today 226:25–36

    CAS  Google Scholar 

  23. Kerr GT (1963) Science 140:1412–1412

    CAS  PubMed  Google Scholar 

  24. Liu Q, Trong P, Porosoff MD, Lobo RF (2012) Chemsuschem 5:2237–2242

    CAS  PubMed  Google Scholar 

  25. Remy T, Gobechiya E, Danaci D, Peter SA, Xiao P, Van Tendeloo L, Couck S, Shang J, Kirschhock CEA, Singh RK, Martens JA, Baron GV, Webley PA, Denayer JFM (2014) RSC Adv 4:62511–62524

    CAS  Google Scholar 

  26. Gao F, Kwak JH, Szanyi J, Peden CHF (2013) Top Catal 56:1441–1459

    CAS  Google Scholar 

  27. Luo J, Gao F, Kamasamudram K, Currier N, Peden CHF, Yezerets A (2017) J Catal 348:291–299

    CAS  Google Scholar 

  28. Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C (2015) Chem Sci 6:548–563

    CAS  PubMed  Google Scholar 

  29. Bates SA, Verma AA, Paolucci C, Parekh AA, Anggara T, Yezerets A, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97

    CAS  Google Scholar 

  30. McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, Ribeiro FH (2012) Catal Today 184:129–144

    CAS  Google Scholar 

  31. Göltl F, Bulo RE, Hafner J, Sautet P (2013) J Phys Chem Lett 4:2244–2249

    Google Scholar 

  32. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809–4818

    CAS  Google Scholar 

  33. Moden B, Da Costa P, Lee DK, Iglesia E (2002) J Phys Chem B 106:9633–9641

    CAS  Google Scholar 

  34. Vennestrøm PNR, Janssens TVW, Kustov A, Grill M, Puig-Molina A, Lundegaard LF, Tiruvalam RR, Concepción P, Corma A (2014) J Catal 309:477–490

    Google Scholar 

  35. Vanelderen P, Vancauwenbergh J, Sels BF, Schoonheydt RA (2013) Coord Chem Rev 257:483–494

    CAS  Google Scholar 

  36. Müller M, Harvey G, Prins R (2000) Microporous Mesoporous Mater 34:135–147

    Google Scholar 

  37. Palella BI, Cadoni M, Frache A, Pastore HO, Pirone R, Russo G, Coluccia S, Marchese L (2003) J Catal 217:100–106

    CAS  Google Scholar 

  38. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B Environ 102:441–448

    CAS  Google Scholar 

  39. Blakeman PG, Burkholder EM, Chen HY, Collier JE, Fedeyko JM, Jobson H, Rajaram RR (2014) Catal Today 231:56–63

    CAS  Google Scholar 

  40. Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF (2015) Appl Catal B Environ 162:501–514

    CAS  Google Scholar 

  41. Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Chem Commun 48:8264–8266

    CAS  Google Scholar 

  42. Martín N, Paris C, Vennestrøm PNR, Thøgersen JR, Moliner M, Corma A (2017) Appl Catal B Environ 217:125–136

    Google Scholar 

  43. Kim J, Cho SJ, Kim DH (2017) ACS Catal 7:6070–6081

    CAS  Google Scholar 

  44. Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H (2011) Catal Today 164:495–499

    CAS  Google Scholar 

  45. Ma L, Li J, Cheng Y, Lambert CK, Fu L (2012) Environ Sci Technol 46:1747–1754

    CAS  PubMed  Google Scholar 

  46. Ye Q, Wang L, Yang RT (2012) Appl Catal A-Gen 427–428:24–34

    Google Scholar 

  47. Wang A, Wang Y, Walter ED, Washton NM, Guo Y, Lu G, Peden CHF, Gao F (2019) Catal Today 320:91–99

    CAS  Google Scholar 

  48. Wang L, Li W, Schmieg SJ, Weng D (2015) J Catal 324:98–106

    CAS  Google Scholar 

  49. Xu L, Du AP, Wei YX, Wang YL, Yu ZX, He YL, Zhang XZ, Liu ZM (2008) Microporous Mesoporous Mater 115:332–337

    CAS  Google Scholar 

  50. Petitto C, Delahay G (2015) Chem Eng J 264:404–410

    CAS  Google Scholar 

  51. Xu MH, Wang J, Yu T, Wang JQ, Shen MQ (2018) Appl Catal B Environ 220:161–170

    CAS  Google Scholar 

  52. Martinez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82

    CAS  Google Scholar 

  53. Cortés-Reyes M, Finocchio E, Herrera C, Larrubia MA, Alemany LJ, Busca G (2017) Microporous Mesoporous Mater 241:258–265

    Google Scholar 

  54. Yu T, Fan DQ, Hao T, Wang J, Shen MQ, Li W (2014) Chem Eng J 243:159–168

    CAS  Google Scholar 

  55. Yu T, Wang J, Shen M, Li W (2013) Catal Sci Technol 3:3234–3241

    CAS  Google Scholar 

  56. Sastre G, Lewis DW, Catlow CRA (1997) J Phys Chem B 101:5249–5262

    CAS  Google Scholar 

  57. Di Iorio JR, Bates SA, Verma AA, Delgass WN, Ribeiro FH, Miller JT, Gounder R (2015) Top Catal 58:424–434

    Google Scholar 

  58. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF (2015) J Catal 331:25–38

    CAS  Google Scholar 

  59. Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK (2014) J Catal 311:447–457

    CAS  Google Scholar 

  60. Han S, Ye Q, Cheng SY, Kang TF, Dai HX (2017) Catal Sci Technol 7:703–717

    CAS  Google Scholar 

  61. Han S, Cheng J, Zheng C, Ye Q, Cheng S, Kang T, Dai H (2017) Appl Surf Sci 419:382–392

    CAS  Google Scholar 

  62. Gao F, Szanyi J (2018) Appl Catal A Gen 560:185–194

    CAS  Google Scholar 

  63. Chung SY, Kim BS, Hong SB, Nam IS, Kim YG (2000) Stud Surf Sci Catal 130:1511–1516

    Google Scholar 

  64. Fan C, Chen Z, Pang L, Ming S, Zhang X, Albert KB, Liu P, Chen H, Li T (2018) Appl Catal A Gen 550:256–265

    CAS  Google Scholar 

  65. Zhao Z, Yu R, Zhao R, Shi C, Gies H, Xiao F-S, De Vos D, Yokoi T, Bao X, Kolb U, Feyen M, McGuire R, Maurer S, Moini A, Müller U, Zhang W (2017) Appl Catal B Environ 217:421–428

    CAS  Google Scholar 

  66. Zhang L, Chen K, Chen B, White JL, Resasco DE (1819) J Am Chem Soc 137(2015):11810–11811

    Google Scholar 

  67. Chen Z, Fan C, Pang L, Ming S, Guo W, Liu P, Chen H, Li T (2018) Chem Eng J 348:608–617

    CAS  Google Scholar 

  68. Ming S, Chen Z, Fan C, Pang L, Guo W, Albert KB, Liu P, Li T (2018) Appl Catal A Gen 559:47–56

    CAS  Google Scholar 

  69. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2013) Chem Eng J 225:323–330

    CAS  Google Scholar 

  70. Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudram K, Epling WS (2015) Appl Catal B Environ 165:438–445

    CAS  Google Scholar 

  71. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) Appl Catal B Environ 127:137–147

    CAS  Google Scholar 

  72. Ma JW, Li YH, Liu J, Zhao Z, Xu CM, Wei YC, Song WY, Sun YQ, Zhang X (2019) Ind Eng Chem Res 58:2389–2395

    CAS  Google Scholar 

  73. Su WK, Li ZG, Peng Y, Li JH (2015) Phys Chem Chem Phys 17:29142–29149

    CAS  PubMed  Google Scholar 

  74. Ma L, Su W, Li Z, Li J, Fu L, Hao J (2015) Catal Today 245:16–21

    CAS  Google Scholar 

  75. Zhang R, Szanyi J, Gao F, McEwen J-S (2016) Catal Sci Technol 6:5812–5829

    CAS  Google Scholar 

  76. Metkar PS, Balakotaiah V, Harold MP (2011) Chem Eng Sci 66:5192–5203

    CAS  Google Scholar 

  77. Iwasaki M, Shinjoh H (2010) Appl Catal A Gen 390:71–77

    CAS  Google Scholar 

  78. Sjövall H, Olsson L, Fridell E, Blint RJ (2006) Appl Catal B Environ 64:180–188

    Google Scholar 

  79. Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Phys Chem Chem Phys 14:2229–2238

    CAS  PubMed  Google Scholar 

  80. Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT, Gounder R, Delgass WN, Ribeiro FH, Schneider WF (1833) Angew Chem Int Ed Engl 53(2014):11828–11831

    Google Scholar 

  81. Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C, Bordiga S, Godiksen A, Mossin S, Beato P (2015) ACS Catal 5:2832–2845

    CAS  Google Scholar 

  82. Wang D, Zhang L, Kamasamudram K, Epling WS (2013) ACS Catal 3:871–881

    CAS  Google Scholar 

  83. Yu T, Hao T, Fan DQ, Wang J, Shen MQ, Li W (2014) J Phys Chem C 118:6565–6575

    CAS  Google Scholar 

  84. Ruggeri MP, Nova I, Tronconi E (2013) Top Catal 56:109–113

    CAS  Google Scholar 

  85. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2014) Appl Catal B Environ 156–157:428–437

    Google Scholar 

  86. Su WK, Chang HZ, Peng Y, Zhang CZ, Li JH (2015) Environ Sci Technol 49:467–473

    CAS  PubMed  Google Scholar 

  87. Ruggeri MP, Selleri T, Nova I, Tronconi E, Pihl JA, Toops TJ, Partridge WP (2016) Top Catal 59:907–912

    CAS  Google Scholar 

  88. Chen HY, Kollar M, Wei Z, Gao F, Wang Y, Szanyi J, Peden CHF (2019) Catal Today 320:61–71

    CAS  Google Scholar 

  89. Gao F, Mei DH, Wang YL, Szanyi J, Peden CHF (2017) J Am Chem Soc 139:4935–4942

    CAS  PubMed  Google Scholar 

  90. Fan C, Chen Z, Pang L, Ming S, Dong C, Albert KB, Liu P, Wang J, Zhu D, Chen H, Li T (2018) Chem Eng J 334:344–354

    CAS  Google Scholar 

  91. Albert KB, Fan C, Pang L, Chen Z, Ming S, Albert T, Li T (2019) Appl Surf Sci 479:1200–1211

    CAS  Google Scholar 

  92. Tarot ML, Iojoiu EE, Lauga V, Duprez D, Courtois X, Can F (2019) Appl Catal B Environ 250:355–368

    CAS  Google Scholar 

  93. Xie K, Wang A, Woo J, Kumar A, Kamasamudram K, Olsson L (2019) Appl Catal B Environ 256:117815

    CAS  Google Scholar 

  94. Xie K, Woo J, Bernin D, Kumar A, Kamasamudram K, Olsson L (2019) Appl Catal B Environ 241:205–216

    CAS  Google Scholar 

  95. Chen Z, Fan C, Pang L, Ming S, Liu P, Li T (2018) Appl Catal B Environ 237:116–127

    CAS  Google Scholar 

  96. Zhao H, Zhao Y, Liu M, Li X, Ma Y, Yong X, Chen H, Li Y (2019) Appl Catal B Environ 252:230–239

    CAS  Google Scholar 

  97. Lezcano-Gonzalez I, Deka U, van der Bij HE, Paalanen P, Arstad B, Weckhuysen BM, Beale AM (2014) Appl Catal B Environ 154–155:339–349

    Google Scholar 

  98. Usui T, Liu Z, Ibe S, Zhu J, Anand C, Igarashi H, Onaya N, Sasaki Y, Shiramata Y, Kusamoto T, Wakihara T (2018) ACS Catal 8:9165–9173

    CAS  Google Scholar 

  99. Niu C, Shi X, Liu K, You Y, Wang S, He H (2016) Catal Commun 81:20–23

    CAS  Google Scholar 

  100. Fan J, Ning P, Wang Y, Song Z, Liu X, Wang H, Wang J, Wang L, Zhang Q (2019) Chem Eng J 369:908–919

    CAS  Google Scholar 

  101. Zhao H, Li H, Li X, Liu M, Li Y (2017) Catal Today 297:84–91

    CAS  Google Scholar 

  102. Zhang R, Li Y, Zhen T (2014) RSC Adv 4:52130–52139

    CAS  Google Scholar 

  103. Xiang X, Cao Y, Sun L, Wu P, Cao L, Xu S, Tian P, Liu Z (2018) Appl Catal A Gen 551:79–87

    CAS  Google Scholar 

  104. Zhao Z, Yu R, Shi C, Gies H, Xiao FS, De Vos D, Yokoi T, Bao X, Kolb U, McGuire R, Parvulescu AN, Maurer S, Müller U, Zhang W (2019) Catal Sci Technol 9:241–251

    CAS  Google Scholar 

  105. Yu C, Dong L, Chen F, Liu X, Huang B (2017) Environ Technol 38:1030–1042

    CAS  PubMed  Google Scholar 

  106. Liu Q, Fu Z, Ma L, Niu H, Liu C, Li J, Zhang Z (2017) Appl Catal A Gen 547:146–154

    CAS  Google Scholar 

  107. Shi Y, Wang X, Xia Y, Sun C, Zhao C, Li S, Li W (2017) Mol Catal 433:265–273

    CAS  Google Scholar 

  108. Li Y, Song W, Liu J, Zhao Z, Gao M, Wei Y, Wang Q, Deng J (2017) Chem Eng J 330:926–935

    CAS  Google Scholar 

  109. Zhang T, Qiu F, Li J (2016) Appl Catal B Environ 195:48–58

    CAS  Google Scholar 

  110. Zha K, Kang L, Feng C, Han L, Li H, Yan T, Maitarad P, Shi L, Zhang D (2018) Environ Sci Nano 5:1408–1419

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [No. 2016YFC0205300, 2016YFC0205302, 2016YFC0205303], National Engineering Laboratory for Mobile Source Emission Control Technology [No. NELMS2017A03], the Natural National Science Foundation of China [grant number No. 21507100, No. 21503144, No. 21690083], Tianjin Research Program of Ecological Environmental Treatment [No. 18ZXSZSF00210, No. 18ZXSZSF00060] and the Tianjin Research Program of Application Foundation and Advanced Technique [No. 16JCQNJC05400].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingling Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Bi, Y., Han, J. et al. A Perspective on the Relationship Between Microstructure and Performance of Cu-Based Zeolites for the Selective Catalytic Reduction of NOx. Catal Surv Asia 24, 179–195 (2020). https://doi.org/10.1007/s10563-020-09302-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09302-8

Keywords

Navigation