Skip to main content
Log in

Chickpea peel waste as sustainable precursor for synthesis of fluorescent carbon nanotubes for bioimaging application

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this study, we report a controlled one-pot green synthesis of multiwalled carbon nanotubes (MWCNTs) via pyrolysis of sustainable agriculture waste (chickpea peel) at 400 °C in aqueous medium. These MWCNTs demonstrated 7.0 nm diameter, 0.28 nm graphitic spacing with carbonyl, hydroxyl, and carboxylic acid functionality. The D band (presence of sp3 defects) and G band (E2g mode of graphite) at 1350 cm−1 and 1580 cm−1 originated in Raman spectrum, respectively. The prepared MWCNTs showed blue fluorescence with 10% fluorescence quantum yield in aqueous medium. The MWCNTs showed triple exponential decay characteristics with an average fluorescence lifetime of 4.7 ns. The synthesized MWCNTs revealed a consistent fluorescence in the cytoplasm of 22RV1 human prostate carcinoma cell line without exerting any sign of cytotoxicity. The MWCNTs also exhibited remarkable cytocompatibility in human immortalized prostate epithelial RWPE1 cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jorio A, Dresselhaus G (2006) Advanced topics in the synthesis, structure. Springer Publishing House, Berlin, p 101

    Google Scholar 

  2. Tuaev X, Paraknowitsch JP, Illgen R, Thomas A, Strasser P (2012) Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Phys Chem Chem Phys 14:6444–6447

    Article  Google Scholar 

  3. Hatton RA, Miller AJ, Silva SRP (2008) Carbon nanotubes: a multi-functional material for organic optoelectronics. J Mater Chem 18:1183–1192

    Article  CAS  Google Scholar 

  4. Wen J, Xu Y, Li H et al (2015) Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 51:11346–11358

    Article  CAS  Google Scholar 

  5. Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592–1605

    Article  CAS  Google Scholar 

  6. Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 56:5646–5652

    Article  Google Scholar 

  7. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–352

    Article  CAS  Google Scholar 

  8. Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42:1153–1158

    Article  CAS  Google Scholar 

  9. Iizumi Y, Yudasaka M, Kim J, Sakakita H, Takeuchi T, Okazaki T (2018) Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Sci Rep 8:6272

    Article  Google Scholar 

  10. Boghossian AA, Zhang J, Barone PW, Reuel NF, Kim JH, Heller DA, Ahn JH, Hilmer AJ, Rwei A, Arkalgud JR, Zhang CT, Strano MS (2011) Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4:848–863

    Article  CAS  Google Scholar 

  11. Liu J, Dong Y, Ma Y, Han Y, Ma S, Chen H, Chen X (2018) One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO– probing and cell imaging. Nanoscale 10:13589–13598

    Article  CAS  Google Scholar 

  12. Chen S, Jia Y, Zou GY, Yu YL, Wang JH (2019) A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. Nanoscale 11:6377–6383

    Article  CAS  Google Scholar 

  13. Shi W, Plata DL (2018) Vertically aligned carbon nanotubes: production and applications for environmental sustainability. Green Chem 20:5245–5260

    Article  CAS  Google Scholar 

  14. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  CAS  Google Scholar 

  15. Zhou J, Wang C, Qian Z, Chen C, Ma J, Du G, Chen J, Feng H (2012) Highly efficient fluorescent multi-walled carbon nanotubes functionalized with diamines and amides. J Mater Chem 22:11912–11914

    Article  CAS  Google Scholar 

  16. Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4:1372–1381

    Article  CAS  Google Scholar 

  17. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  CAS  Google Scholar 

  18. Mohammadinejad R, Karimi S, Iravani S, Varma RS (2015) Plant-derived nanostructures: types and applications. Green Chem 18:20–52

    Article  Google Scholar 

  19. Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    Article  CAS  Google Scholar 

  20. Maser WK, Muñoz E, Benito AM, Martínez MT, De La Fuente GF, Maniette Y, Anglaret E, Sauvajol JL (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292:587–593

    Article  CAS  Google Scholar 

  21. Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    Article  CAS  Google Scholar 

  22. Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72:3282–3284

    Article  CAS  Google Scholar 

  23. Singh V, Rawat KS, Mishra S, Baghel T, Fatima S, John AA, Kalleti N, Singh D, Nazir A, Rath SK, Goel A (2018) Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C. elegans and BALB/c mice. J Mater Chem B 6:3366–3371

    Article  CAS  Google Scholar 

  24. Lara-Romero J, Ocampo-Macias T, Martínez-Suarez R, Rangel-Segura R, López-Tinoco J, Paraguay-Delgado F, Alonso-Nuñez G, Jiménez-Sandoval S, Chiñas-Castillo F (2017) Parametric study of the synthesis of carbon nanotubes by spray pyrolysis of a biorenewable feedstock: α-pinene, ACS sustain. Chem Eng 5:3890–3896

    CAS  Google Scholar 

  25. Zhuo C, Alves JO, Tenorio JAS, Levendis YA (2012) Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Ind Eng Chem Res 51:2922–2930

    Article  CAS  Google Scholar 

  26. Xu Y, Jia XH, Yin XB, He XW, Zhang YK (2014) Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Anal Chem 86:12122–12130

    Article  CAS  Google Scholar 

  27. El-Sayed R, Eita M, Barrefelt Å et al (2013) Thermostable luciferase from Luciola cruciate for imaging of carbon nanotubes and carbon nanotubes carrying doxorubicin using in vivo imaging system. Nano Lett 13:1393–1398

    Article  CAS  Google Scholar 

  28. Wang C, Bao C, Liang S et al (2014) RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res Lett 9:264

    Article  Google Scholar 

  29. Niño-Medina G, Muy-Rangel D, De La Garza AL et al (2019) Dietary fiber from chickpea (Cicer arietinum) and soybean (glycine max) husk byproducts as baking additives: functional and nutritional properties. Molecules 24:991

    Article  Google Scholar 

  30. Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Carbon nanotubes—synthesis, characterization, applications. https://doi.org/10.5772/19331

  31. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  32. Eklund PC, Holden JM, Jishi RA (1995) Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon N Y 33:959–972

    Article  CAS  Google Scholar 

  33. Lecroy GE, Messina F, Sciortino A, Bunker CE, Wang P, Fernando KAS, Sun YP (2017) Characteristic excitation wavelength dependence of fluorescence emissions in carbon “quantum” dots. J Phys Chem C 121:28180–28186

    Article  CAS  Google Scholar 

  34. Sharma A, Gadly T, Gupta A, Ballal A, Ghosh SK, Kumbhakar M (2016) Origin of excitation dependent fluorescence in carbon nanodots. J Phys Chem Lett 7:3695–3702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VS thank Department of Materials Science and Engineering, IIT Kanpur, India for fellowship (Institute Postdoctoral Fellowship) and funding (PDF 88). PS thanks Visvesvaraya PhD Programme of Ministry of Electronics and Information Technology (MeitY), Government of India for providing young faculty research fellowship. BA is thankful for the research funding from the Welcome Trust/DBT India Alliance (IA/I(S)/12/2/500635 to BA), Department of Biotechnology, Government of India (BT/PR8675/GET/119/1/2015) and the Science and Engineering Research Board (SERB) (EMR/2016/005273). We acknowledge advance imaging centre and advance centre for materials science, IIT Kanpur for HR-TEM and XPS study, respectively. This work was supported by Department of Science and Technology-Technology Systems Development Program (DST-TSDP) grant number DST/TSG/AMT/2015/329 awarded to VV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikram Singh or Vivek Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Chatterjee, S., Palecha, M. et al. Chickpea peel waste as sustainable precursor for synthesis of fluorescent carbon nanotubes for bioimaging application. Carbon Lett. 31, 117–123 (2021). https://doi.org/10.1007/s42823-020-00156-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00156-8

Keywords

Navigation