Skip to main content
Log in

Biomethane enhancement via plastic carriers in anaerobic co-digestion of agricultural wastes

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Two types of plastic carriers low-density polyethylene (LDPET) and high-density polyethylene (HDPET) were used as a support material for biofilm formation during anaerobic co-digestion of agricultural wastes. LDPET and HDPET were added separately to different reactors containing binary substrates: corn straw and cauliflower leaves (G 1), corn straw and cow dung (G 2), while ternary substrates corn straw, cauliflower leaves, and cow dung were used in G 3. Reactors containing either HDPET or LDPET carriers supported the enhancement of biogas and biomethane. Maximum daily biomethane (333.43 and 368.35 mL/day) was achieved after HDPET addition to G1 and G2 at day 10 and 12, respectively. The accumulative biomethane were significantly enhanced (p < 0.05) by 17.14% and 23.52%, compared with reactors having LDPET carriers 11.89% and 5.53%, respectively. HDPET addition to ternary substrates (G 3) resulted in highest biomethane production (31.61%) and total solids (31.70%) and volatile solid (61.63%) removal. The major short-chain fatty acids (SCFAs) detected in all groups were acetic acid (4–5 g/L) and propionic acid (2–3 g/L), and their conversion to biomethane was the highest with HDPET. Scanning electron microscopy (SEM) analysis of the supporting materials showed that the plastic carriers support the biofilm formation especially in the case of HDPET. This study demonstrated that addition of cost-effective plastic carrier (HDPET) to anaerobic digestion system supported the formation of biofilm, leading to significantly increase in substrate utilization and biomethane production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tyagi VK, Fdez-Güelfo L, Zhou Y, Álvarez-Gallego C, Garcia LR, Ng WJ (2018) Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges. Renew Sust Energ Rev 93:380–399. https://doi.org/10.1016/j.rser.2018.05.051

    Article  Google Scholar 

  2. Wang X, Li Z, Zhou X, Wang Q, Wu Y, Saino M, Bai X (2016) Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw. Bioresour Technol 219:150–157. https://doi.org/10.1016/j.biortech.2016.07.116

    Article  Google Scholar 

  3. Yan H, Zhao C, Zhang J, Zhang R, Xue C, Liu G, Chen C (2017) Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion. AMB Express 7(1):27. https://doi.org/10.1186/s13568-017-0325-1

    Article  Google Scholar 

  4. Di Maria F, Sordi A, Cirulli G, Gigliotti G, Massaccesi L, Cucina M (2014) Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste Manag 34(9):1603–1608. https://doi.org/10.1016/j.wasman.2014.05.017

    Article  Google Scholar 

  5. Siddique MNI, Wahid ZA (2018) Achievements and perspectives of anaerobic co-digestion: a review. J Clean Prod 194:359–371. https://doi.org/10.1016/j.jclepro.2018.05.155

    Article  Google Scholar 

  6. Almomani F, Shawaqfah M, Bhosale R, Kumar A, Khraisheh M (2017) Intermediate ozonation to enhance biogas production in batch and continuous systems using animal dung and agricultural waste. Int Biodeter Biodegr 119:176–187. https://doi.org/10.1016/j.ibiod.2016.11.008

    Article  Google Scholar 

  7. Almomani F, Bhosale R, Khraisheh M, Shawaqfah M (2019) Enhancement of biogas production from agricultural wastes via pre-treatment with advanced oxidation processes. Fuel 253:964–974. https://doi.org/10.1016/j.fuel.2019.05.057

    Article  Google Scholar 

  8. Ashkanani A, Almomani F, Khraisheh M, Bhosale R, Tawalbeh M, AlJaml K (2019) Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). Sci Total Environ 693:133425. https://doi.org/10.1016/j.scitotenv.2019.07.231

    Article  Google Scholar 

  9. Zhou A, Zhang J, Varrone C, Wen K, Wang G, Liu W, Wang A, Yue X (2017) Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments. Energy 137:457–467. https://doi.org/10.1016/j.energy.2017.02.166

    Article  Google Scholar 

  10. Júnior ADNF, Etchebehere C, Zaiat M (2015) Mesophilic hydrogen production in acidogenic packed-bed reactors (APBR) using raw sugarcane vinasse as substrate: influence of support materials. Anaerobe 34:94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008

    Article  Google Scholar 

  11. Gong W-j, Liang H, Li W-z, Wang Z-z (2011) Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy 36(5):3572–3578. https://doi.org/10.1016/j.energy.2011.03.068

    Article  Google Scholar 

  12. Habouzit F, Hamelin J, Santa-Catalina G, Steyer JP, Bernet N (2014) Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm Archaea community is highly dependent on the support material. Microb Biotechnol 7(3):257–264. https://doi.org/10.1111/1751-7915.12115

    Article  Google Scholar 

  13. Sekhar VC, Nampoothiri KM, Mohan AJ, Nair NR, Bhaskar T, Pandey A (2016) Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J Hazard Mater 318:347–354. https://doi.org/10.1016/j.jhazmat.2016.07.008

    Article  Google Scholar 

  14. Wan S, Sun L, Douieb Y, Sun J, Luo W (2013) Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour Technol 146:619–627. https://doi.org/10.1016/j.biortech.2013.07.140

    Article  Google Scholar 

  15. Talvitie J, Heinonen M, Pääkkönen J-P, Vahtera E, Mikola A, Setälä O, Vahala R (2015) Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci Technol 72(9):1495–1504. https://doi.org/10.2166/wst.2015.360

    Article  Google Scholar 

  16. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  Google Scholar 

  17. Haigh JN, Dargaville TR, Dalton PD (2017) Additive manufacturing with polypropylene microfibers. Mater Sci Eng: C 77:883–887. https://doi.org/10.1016/j.msec.2017.03.286

    Article  Google Scholar 

  18. Tian T, Qiao S, Li X, Zhang M, Zhou J (2017) Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour Technol 224:41–47. https://doi.org/10.1016/j.biortech.2016.10.058

    Article  Google Scholar 

  19. Kurade MB, Saha S, Salama E-S, Patil SM, Govindwar SP, Jeon B-H (2019) Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour Technol 272:351–359. https://doi.org/10.1016/j.biortech.2018.10.047

    Article  Google Scholar 

  20. Pavan P, Battistoni P, Mata-Alvarez J, Cecchi F (2000) Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Sci Technol 41(3):75–81. https://doi.org/10.2166/wst.2000.0058

    Article  Google Scholar 

  21. Smidt E, Böhm K, Schwanninger M (2011) Fourier transforms-new analytical approaches and FTIR strategies. In: The Application of FT-IR Spectroscopy in Waste Management. InTech, pp 405–430. https://doi.org/10.5772/15998

  22. Costa LA, Assis DJ, Gomes GV, da Silva JB, Fonsêca AF, Druzian JI (2015) Extraction and characterization of nanocellulose from corn stover. Mater Today: Proc 2(1):287–294. https://doi.org/10.1016/j.matpr.2015.04.045

    Article  Google Scholar 

  23. Sun J, Xu F, Sun X, Xiao B, Sun R (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stab 88(3):521–531. https://doi.org/10.1016/j.polymdegradstab.2004.12.013

    Article  Google Scholar 

  24. Jouraiphy A, Amir S, El Gharous M, Revel J-C, Hafidi M (2005) Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. Int Biodeter Biodegr 56(2):101–108. https://doi.org/10.1016/j.ibiod.2005.06.002

    Article  Google Scholar 

  25. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. John Wiley & Sons

  26. Huang X, Yun S, Zhu J, Du T, Zhang C, Li X (2016) Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: focusing on mixing ratios and digestate stability. Bioresour Technol 218:62–68. https://doi.org/10.1016/j.biortech.2016.06.070

    Article  Google Scholar 

  27. Liu Y, Zhue Y, Jia H, Yong X, Zhang L, Zhou J, Cao Z, Kruse A, Wei P (2017) Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour Technol 244:445–451. https://doi.org/10.1016/j.biortech.2017.07.171

    Article  Google Scholar 

  28. Martí-Herrero J, Alvarez R, Rojas M, Aliaga L, Céspedes R, Carbonell J (2014) Improvement through low cost biofilm carrier in anaerobic tubular digestion in cold climate regions. Bioresour Technol 167:87–93. https://doi.org/10.1016/j.biortech.2014.05.115

    Article  Google Scholar 

  29. Vartak D, Engler C, McFarland M, Ricke S (1997) Attached-film media performance in psychrophilic anaerobic treatment of dairy cattle wastewater. Bioresour Technol 62(3):79–84. https://doi.org/10.1016/S0960-8524(97)00135-1

    Article  Google Scholar 

  30. Liu Y, Lin C, Jia H, Yong X, Xie X, Wu X, Zhou J, Wei P (2019) Effects of amino-modified biofilm carrierson biogas production in the anaerobic digestion of corn straw. Environ Technol 1–11. https://doi.org/10.1080/09593330.2019.1583290

  31. Izadi P, Izadi P, Eldyasti A, Hawkes R (2018) Enhancement of anaerobic digestion using particulate growth systems. BioEnerg Res 11(3):516–527. https://doi.org/10.1007/s12155-018-9918-z

    Article  Google Scholar 

  32. Pilarska AA, Wolna-Maruwka A, Pilarski K, Janczak D, Przybył K, Gawrysiak-Witulska M (2019) The use of lignin as a microbial carrier in the co-digestion of cheese and wafer waste. Polymers 11(12):2073. https://doi.org/10.3390/polym11122073

    Article  Google Scholar 

  33. Ramm P, Carsten J, Neitmann E, Sohling U, Oliver M, Weinberger K, Mumme J, Linke B (2014) Magnetic biofilm carriers: the use of novel magnetic foam glass particles in anaerobic digestion of sugar beet silage. J Renew Energy 2014:1–10. https://doi.org/10.1155/2014/208718

    Article  Google Scholar 

  34. Zainab A, Meraj S, Liaquat R (2019) Study on natural organic materials as biofilm carriers for the optimization of anaerobic digestion. Waste Biomass Valorization 1–11. https://doi.org/10.1007/s12649-019-00628-7

  35. Bengelsdorf FR, Gabris C, Michel L, Zak M, Kazda M (2015) Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor. AIMS Bioeng 2(3):264–276. https://doi.org/10.3934/bioeng.2015.3.264

    Article  Google Scholar 

  36. Chai H, Kang W (2012) Influence of biofilm density on anaerobic sequencing batch biofilm reactor treating mustard tuber wastewater. Appl Biochem Biotech 168(6):1664–1671. https://doi.org/10.1007/s12010-012-9887-1

    Article  Google Scholar 

  37. Pilarska A, Wolna-Maruwka A, Pilarski K (2018) Kraft lignin grafted with polyvinylpyrrolidone as a novel microbial carrier in biogas production. Energies 11(12):3246. https://doi.org/10.3390/en11123246

    Article  Google Scholar 

  38. Szentgyörgyi E, Nemestóthy N, Belafi-Bako K (2010) Anaerobic moving bed biofilm fermenter for biogas production. Environ Prot Eng 36(4):117–125

    Google Scholar 

  39. Barros AR, Adorno MAT, Sakamoto IK, Maintinguer SI, Varesche MBA, Silva EL (2011) Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresour Technol 102(4):3840–3847. https://doi.org/10.1016/j.biortech.2010.12.014

    Article  Google Scholar 

  40. Fernández A, Sánchez A, Font X (2005) Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem Eng J 26(1):22–28. https://doi.org/10.1016/j.bej.2005.02.018

    Article  Google Scholar 

  41. Habiba L, Hassib B, Moktar H (2009) Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour Technol 100(4):1555–1560. https://doi.org/10.1016/j.biortech.2008.09.019

    Article  Google Scholar 

  42. Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102(9):5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081

    Article  Google Scholar 

  43. Gorris L, Van Deursen J, Van der Drift C, Vogels G (1989) Inhibition of propionate degradation by acetate in methanogenic fluidized bed reactors. Biotechnol Lett 11(1):61–66. https://doi.org/10.1007/BF01026788

    Article  Google Scholar 

  44. Nielsen HB, Uellendahl H, Ahring BK (2007) Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31(11-12):820–830. https://doi.org/10.1016/j.biombioe.2007.04.004

    Article  Google Scholar 

  45. Franke-Whittle IH, Walter A, Ebner C, Insam H (2014) Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag 34(11):2080–2089. https://doi.org/10.1016/j.wasman.2014.07.020

    Article  Google Scholar 

  46. Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42(2):159–166. https://doi.org/10.1002/bit.260420203

    Article  Google Scholar 

  47. Zhang B, Zhao H, Yu H, Chen D, Li X, Wang W, Piao R, Cui Z (2016) Evaluation of biogas production performance and archaeal microbial dynamics of corn straw during anaerobic co-digestion with cattle manure liquid. J Microbiol Biotechnol 26(4):739–747. https://doi.org/10.4014/jmb.1509.09043

    Article  Google Scholar 

  48. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sust Energ Rev 15(6):3141–3155. https://doi.org/10.1016/j.rser.2011.04.026

    Article  Google Scholar 

  49. Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4(1):24. https://doi.org/10.1186/1475-2859-4-24

    Article  Google Scholar 

  50. De Vrieze J, Devooght A, Walraedt D, Boon N (2016) Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. Appl Microbiol Biot 100(11):5177–5187. https://doi.org/10.1007/s00253-016-7503-y

    Article  Google Scholar 

  51. Wu W, Chen Y, Faisal S, Khan A, Chen Z, Ling Z, Liu P, Li X (2016) Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition. Sci Rep 6(1):1–8. https://doi.org/10.1038/srep33628

    Article  Google Scholar 

  52. Vavilin V, Rytov S, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour Technol 56(2–3):229–237. https://doi.org/10.1016/0960-8524(96)00034-X

    Article  Google Scholar 

  53. Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102(20):9395–9402. https://doi.org/10.1016/j.biortech.2011.07.026

    Article  Google Scholar 

Download references

Funding

This study was financed by Fundamental Research Funds for the Central Universities grant (No: lzujbky-2017-br01), Gansu province major science and technology projects (No: 17ZD2WA017), and National Natural Science Foundation Grant (No: 31870082), China. This research was also supported by the startup fund for the construction of the double first-class project (No. 561119201), Lanzhou University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to El-Sayed Salama or Xiangkai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, S., Salama, ES., Hassan, S.H.A. et al. Biomethane enhancement via plastic carriers in anaerobic co-digestion of agricultural wastes. Biomass Conv. Bioref. 12, 2553–2565 (2022). https://doi.org/10.1007/s13399-020-00779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00779-x

Keywords

Navigation