Skip to main content
Log in

EPR Study on the Intercalation of Azoles into Transition Metal Oxides

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Four azoles of different chemical structure were intercalated into MoO3, V2O5, and WO3 oxides synthetized via polycondensation of corresponding oxo-acids under the solvothermal conditions. Structural and morphology peculiarities of these hybrid materials were characterized using X-ray and neutron diffraction, electron microscopy and EPR spectroscopy. The EPR measurements provided the evidence that azole molecules coordinate monomers and oligomers of molybdic, tungstic and vanadic acids during the course of solvothermal synthesis of azole-oxide hybrid structures. This coordination is accompanied with reorganization of growing oxide frame leading to the unprecedently high azole loading. As the result, the azole-intercalated layered oxides with high concentration of ordered paramagnetic centers are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Materials

All data needed to evaluate the conclusions in the paper are present in the paper.

References

  1. M. Atsharpur, A. Mahjoub, M.M. Amini, J. Inorg. Organomet. Polym. Mater. 19, 298 (2009)

    Article  Google Scholar 

  2. Y. Jing, Q. Pan, Z. Cheng, X. Dong, Y. Xiang, Mater. Sci. Eng. B 138, 55 (2007)

    Article  Google Scholar 

  3. T. Rostamzadeh, K. Riché, S.S. Akbarian-Tefaghi, T.T. Brown, J.B. Wiley, FlatChem 5, 9 (2017)

    Article  Google Scholar 

  4. J.W. Johnson, A.J. Jacobsen, S.M. Rich, J.F. Brody, J. Am. Chem. Soc. 103, 5246 (1981)

    Article  Google Scholar 

  5. T.V. Sviridova, L.I. Stepanova, D.V. Sviridov, in Molybdenum: Characteristics, Production and Application, ed. by M. Ortiz, T. Herrera (Nova Science, New York, 2012), pp. 147–179

    Google Scholar 

  6. W. Li, F. Xia, J. Qu, P. Li, D. Chen, Z. Chen, Y. Yu, Y. Lu, R.A. Caruso, Nano Res. 7, 903 (2014)

    Article  Google Scholar 

  7. M. Figlarz, Progr. Solid State Chem. 19, 1 (1989)

    Article  Google Scholar 

  8. C.-G. Wu, H.O. Marcy, D.C. DeGroot, C.R. Kannewurf, M.G. Kanatzidis, MRS Proc. 173, 317 (1989)

    Article  Google Scholar 

  9. C.-G. Wu, D.C. DeGroot, H.O. Marcy, J.L. Schindler, C.R. Kannewurf, Y.-J. Liu, W. Hirpo, M.G. Kanatzidis, Chem. Mater. 8, 1992 (1996)

    Article  Google Scholar 

  10. G. Du, K.H. Seng, Z. Guo, J. Liu, W. Li, D. Jia, C. Cook, Z. Liue, H. Liu, RSC Adv. 1, 690 (2011)

    Article  Google Scholar 

  11. F.J. Quites, C. Bisio, R.C.G. Vinhas, R. Landers, L. Marchese, H.O. Pastore, J. Colloid Interface Sci. 368, 462 (2012)

    Article  ADS  Google Scholar 

  12. D. Liu, Y. Liu, A. Pan, K.P. Nagle, G.T. Seidler, Y.-H. Jeong, G. Cao, J. Phys. Chem. C 115, 4959 (2011)

    Article  Google Scholar 

  13. K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Appl. Mater. Today 5, 73 (2016)

    Article  Google Scholar 

  14. L. Peng, Y. Zhu, X. Peng, Z. Fang, W. Chu, Y. Wang, Y. Xie, Y. Li, J.J. Cha, G. Yu, Nano Lett. 17, 6273 (2017)

    Article  ADS  Google Scholar 

  15. A. Al-Temimy, B. Anasori, K.A. Mazzio, F. Kronast, M. Seredych, N. Kurra, M.-A. Mawass, S. Raoux, Y. Gogotsi, T. Petit, J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.9b11766

    Article  Google Scholar 

  16. E.V. Skorb, D. Fix, D.V. Andreeva, D.G. Shchukin, H. Möhwald, Adv. Funct. Mater. 19, 2373 (2009)

    Article  Google Scholar 

  17. E.V. Skorb, D.G. Shchukin, H. Möhwald, D.V. Andreeva, Nanoscale 2, 722 (2010)

    Article  ADS  Google Scholar 

  18. D.V. Andreeva, D.V. Sviridov, A. Masic, H. Möhwald, E.V. Skorb, Small 8, 820 (2012)

    Article  Google Scholar 

  19. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

  20. E.A. Konstantinova, A.A. Minnekhanov, A.I. Kokorin, T.V. Sviridova, D.V. Sviridov, J. Phys. Chem. C 122, 10248 (2018)

    Article  Google Scholar 

  21. I. Nova, L. Lietti, L. Casagrande, L. Dall’Acqua, E. Giamello, P. Forzatti, Appl. Catal. B. 17, 245 (1998)

    Article  Google Scholar 

  22. A. Varlec, D. Arcon, S.D. Skapin, M. Remskar, Mater. Chem. Phys. 170, 154 (2016)

    Article  Google Scholar 

  23. T.V. Sviridova, LYu Sadovskaya, E.A. Konstantinova, N.A. Belyasova, A.I. Kokorin, D.V. Sviridov, Catal. Lett. 149, 1147 (2019)

    Article  Google Scholar 

  24. H.A. Kuska, M.T. Rogers, ESR of First Row Transition Metal Complex Ions (Interscience Publ, New York, 1968)

    Google Scholar 

  25. L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal. 187, 419 (1999)

    Article  Google Scholar 

  26. M. Graetzel, R.F. Howe, J. Phys. Chem. 94, 2566 (1990)

    Article  Google Scholar 

  27. O.B. Lapina, A.A. Shubin, A.V. Nosov, E. Bosch, J. Spengler, H. Knolzinger, J. Phys. Chem. B 103, 7599 (1999)

    Article  Google Scholar 

  28. V.V. Smirnov, I.G. Tarkhanova, A.I. Kokorin, D.S. Tsvetkov, Kinet. Catal. 46, 861 (2005)

    Article  Google Scholar 

  29. A.I. Kokorin, Semicontuctors, in Chemical Physics of Nanostructured, ed. by A.I. Kokorin, D.W. Bahnemann (VSP–Brill Acad Publ, Utrecht, 2003), pp. 203–263

  30. I.V. Kolbanev, E.N. Degtyarev, A.N. Streletskii, A.I. Kokorin, Appl. Magn. Reson. 47, 575 (2016)

    Article  Google Scholar 

  31. S.A. Al'tshuler, B.M. Kozyrev, Electron Paramagnetic Resonance, ed. by C.P. Poole, Jr. (Academic Press, New York, 1964)

  32. YuN Molin, K.M. Salikhov, K.I. Zamaraev, Spin Exchange (Springer, Berlin, 1980)

    Book  Google Scholar 

  33. A.I. Kokorin, V.M. Arakelyan, V.M. Arutyunyan, Russ. Chem. Bull. Intern. Ed. 52, 93 (2003)

    Article  Google Scholar 

  34. J.-P. Jolivet, M. Henry, J. Livage, Metal Oxide Chemistry and Synthesis: From Solution to Solid State (Wiley, Chichester, 2000)

    Google Scholar 

  35. V. Petkov, P.N. Trikalitis, E.S. Bozin, S.J.L. Billinge, T. Vogt, M.G. Kanatzidis, J. Am. Chem. Soc. 124, 10157 (2002)

    Article  Google Scholar 

  36. J.T. Szymanski, A.C. Roberts, Canad. Min. 22, 681 (1984)

    Google Scholar 

  37. N. Noginova, F. Chen, T. Weaver, E.P. Giannelis, A.B. Bourlinos, V.A. Atsarkin, J. Phys. Condens. Matter 19, 246208 (2007)

    Article  ADS  Google Scholar 

  38. G. Vázquez-Victorio, U. Acevedo-Salas, R. Valenzuela, Ferromagnetic Resonance Theory and Application (IntechOpen, London, 2013)

    Google Scholar 

  39. S. Watanabe, S. Akutagawa, K. Sawada, T. Iwasa, Y. Shimoyama, Mater. Trans. 50, 2187 (2009)

    Article  Google Scholar 

  40. S.V. Yurtaeva, V.N. Efimov, G.G. Yafarova, A.A. Eremeev, V.S. Iyudin, A.A. Rodionov, K.L. Gainutdinov, I.V. Yatsyk, Appl. Magn. Reson. 47, 555 (2016)

    Article  Google Scholar 

  41. K. Vasić, Ž. Knez, E.A. Konstantinova, A.I. Kokorin, S. Gyergyek, M. Leitgeb, React. Funct. Polym. 148, 104481 (2020)

    Article  Google Scholar 

  42. L.G. Lavrenova, G.A. Bikzhanova, A.N. Bogatikov, P.N. Gaponik, J. Inorg. Chem. 41, 587 (1996). (in Russian)

    Google Scholar 

Download references

Funding

T.V.S, A.S.L. and D.V.S. acknowledge the support from the Belarusian Republican Foundation for Fundamental Research (Grant Kh19MS-017). A.I.K. and E.A.K. are thankful for the financial support to the Russian Foundation for Basic Research (Grant № 18-53-00020-Bel-a).

Author information

Authors and Affiliations

Authors

Contributions

AIK Supervision, validation, writing–reviewing. ASL visualization, investigation. TVS investigation, data curation. YND investigation, software. EAK investigation, editing. DVS conceptualization, methodology, writing–original draft preparation. All authors approve the final version of the manuscript.

Corresponding author

Correspondence to E. A. Konstantinova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.A., Kokorin, A.I., Logvinovich, A.S. et al. EPR Study on the Intercalation of Azoles into Transition Metal Oxides. Appl Magn Reson 51, 1079–1092 (2020). https://doi.org/10.1007/s00723-020-01205-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01205-1

Navigation