Skip to main content

Advertisement

Log in

Comparing health benefit calculations for alternative energy futures

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Emissions from energy production, conversion, and use are associated with adverse effects on human health and climate. We use the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program (BenMAP) to quantify effects of three potential emission abatement policies in the USA. The policies impose emission fees designed to internalize externalities associated with ozone and particulate matter (PM) pollution and greenhouse gas emissions. A business as usual case is compared to policies in which fees are applied to energy sector emissions of health impacting pollutants: NOx, SO2, PM10, PM2.5, and volatile organic compounds (VOCs), and/or greenhouse gases: CO2 and CH4. Net policy benefits are calculated by summing the health and climate benefits and subtracting the increased energy system cost. For comparison with the detailed model results, benefits are also estimated by the simplified approach of multiplying emission changes by fixed estimates of health damages per ton of emissions. Annual net benefits in 2045 are $173 billion with health-related fees and $116 billion with climate-based fees. A combined policy, with fees on emissions of both greenhouse gases (GHG) and health impacting pollutants, has annual net benefits of $189 billion in 2045. Co-benefits are unevenly distributed. Health benefits of GHG fees are only 40% as large as health benefits from air quality fees. Climate benefits of health fees are 87% as large as those from climate-based fees. Thus, each policy has comparable climate benefits, but air quality and corresponding health improvements are smaller when not specifically targeted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel D, Holloway T, Harkey M, Rrushaj A, Brinkman G, Duran P, Janssen M, Denholm P (2018) Potential air quality benefits from increased solar photovoltaic electricity generation in the eastern United States. Atmos Environ 175:65–74. https://doi.org/10.1016/j.atmosenv.2017.11.049

    Article  CAS  Google Scholar 

  • Appel KW, Napelenok SL, Foley KM, Pye HO, Hogrefe C, Luecken DJ, Bash JO, Roselle SJ, Pleim JE, Foroutan H, 2017. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geoscientific Model Development 10, 1703

  • Babin SM, Burkom HS, Holtry RS, Tabernero NR, Stokes LD, Davies-Cole JO, DeHaan K, Lee DH (2007) Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environ. Health 6 (march): 9. https://doi.org/10.1186/1476-096X-6-9

  • Baker K, Woody M, Tonnesen G, Hutzell W, Pye H, Beaver M, Pouliot G, Pierce T (2016) Contribution of regional-scale fire events to ozone and PM 2.5 air quality estimated by photochemical modeling approaches. Atmos Environ 140:539–554

    Article  CAS  Google Scholar 

  • Baker KR, Emery C, Dolwick P, Yarwood G (2015) Photochemical grid model estimates of lateral boundary contributions to ozone and particulate matter across the continental United States. Atmos Environ 123:49–62

    Article  CAS  Google Scholar 

  • Baker KR, Misenis C, Obland MD, Ferrare RA, Scarino AJ, Kelly JT (2013) Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California. Atmos Environ 80:299–309

    Article  CAS  Google Scholar 

  • Bash JO, Baker KR, Beaver MR, 2016. Evaluation of improved land use and canopy representation in BEIS v3. 61 with biogenic VOC measurements in California. Geoscientific Model Development 9, 2191

  • Bell ML, Ebisu K, Peng RD, Walker J, Samet JM, Zeger SL, Dominici F (2008) Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999-2005. Am J Epidemiol 168(11):1301–1310. https://doi.org/10.1093/aje/kwn252

    Article  Google Scholar 

  • Bell ML, F Dominici, And J.M Samet 2005. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. Epidemiology. 16(4): P. 436–445

  • Bell ML et al (2004) Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 292(19):2372–2378

    Article  CAS  Google Scholar 

  • Brown KE, Henze DK, Milford JB (2017) How accounting for climate and health impacts of emissions could change the us energy system. Energy Policy 102:396–405. https://doi.org/10.1016/j.enpol.2016.12.052

    Article  Google Scholar 

  • Brown KE, 2016 The benefits of internalizing air quality and greenhouse gas externalities in the US energy system. Dissertation. University of Colorado at Boulder. Civil Engineering Graduate Theses & Dissertations. 63 https://scholar.colorado.edu/cven_gradetds/63

  • Brown PR, O’Sullivan FM, 2020 Spatial and temporal variation in the value of solar power across United States electricity markets Renewable and Sustainable Energy Reviews 121. https://doi.org/10.1016/j.rser.2019.109594, Spatial and temporal variation in the value of solar power across United States electricity markets, 121

  • Buonocore JJ, Dong X, Spengler JD, Fu JS, Levy JI (2014) Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2.5 from individual power plants. Environ Int 68(July):200–208. https://doi.org/10.1016/j.envint.2014.03.031

    Article  CAS  Google Scholar 

  • Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59(2):51–77. https://doi.org/10.1115/1.2128636

    Article  Google Scholar 

  • Carlton AG, Baker KR (2011) Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions. Environmental Science & Technology 45:4438–4445

    Article  CAS  Google Scholar 

  • Chen L, Jennison BL, Yang W, Omaye ST (2000) Elementary school absenteeism and air pollution. Inhal Toxicol 12(11):997–1016

    Article  CAS  Google Scholar 

  • Colby S, and J Ortman. 2014. Projections of the size and composition of the U.S. population: 2014 to 2060. P25–1143. Current Population Reports. Washington, D.C: U.S. Census Bureau. https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf

  • Dedoussi IC, Barrett SRH 2014 Air pollution and early deaths in the United States. Part II: attribution of PM2.5 exposure to emissions species, time, location and sector. Atmospheric Environment. 99 610-617. https://doi.org/10.1016/j.atmosenv.2014.10.033

  • Dietz S, Stern N (2015) Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ J 125(583):574–620. https://doi.org/10.1111/ecoj.12188

    Article  Google Scholar 

  • Dockery DW, Cunningham J, Damokosh AI, Neas LM, Spengler JD, Koutrakis P, Ware JH, Raizenne M, Speizer FE (1996) Health effects of acid aerosols on North American children: respiratory symptoms. Environ Health Perspect 104(5):500–505. https://doi.org/10.2307/3432990

    Article  CAS  Google Scholar 

  • Fahey KM, Carlton AG, Pye HO, Baek J, Hutzell WT, Stanier CO, Baker KR, Appel KW, Jaoui M, Offenberg JH (2017) A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1. Geosci Model Dev 10:1587–1605

    Article  CAS  Google Scholar 

  • Fann N, Baker KR, Fulcher CM (2012) Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. Environ Int 49(November):141–151. https://doi.org/10.1016/j.envint.2012.08.017

    Article  CAS  Google Scholar 

  • Fann N, CM Fulcher, and BJ Hubbell. 2009. The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution. Air Qual., Atmos. Health 2 (3): 169–176. https://doi.org/10.1007/s11869-009-0044-0

  • Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ (2012b) Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32(1):81–95. https://doi.org/10.1111/j.1539-6924.2011.01630.x

    Article  Google Scholar 

  • Fann N, Risley D (2011) The public health context for PM2.5 and ozone air quality trends. Air Qual Atmos Health 6(1):1–11. https://doi.org/10.1007/s11869-010-0125-0

    Article  CAS  Google Scholar 

  • Fann N, Roman HA, Fulcher CM, Gentile MA, Hubbell BJ, Wesson K, Levy JI (2011) Maximizing health benefits and minimizing inequality: incorporating local-scale data in the design and evaluation of air quality policies. Risk Anal 31(6):908–922. https://doi.org/10.1111/j.1539-6924.2011.01629.x

    Article  Google Scholar 

  • Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith PJ, Cionni I, Collins WJ, Dalsøren S, Eyring V, Folberth GA, Ginoux P, Horowitz LW, Josse B, Lamarque JF, MacKenzie IA, Nagashima T, O’Connor FM, Righi M, Rumbold ST, Shindell DT, Skeie RB, Sudo K, Szopa S, Takemura T, Zeng G (2012) Global air quality and climate. Chem Soc Rev 41(19):6663–6683. https://doi.org/10.1039/C2CS35095E

    Article  CAS  Google Scholar 

  • Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh(4)(+)-Na+-SO42−-NO3--Cl-H2O aerosols. Atmos Chem Phys 7:4639–4659

    Article  CAS  Google Scholar 

  • Fowlie M, Muller N (2019) Market-based emissions regulation when damages vary across sources: what are the gains from differentiation? J Assoc Environ Resour Econ 6(3):593–632

    Google Scholar 

  • Garcia-Menendez F, RK Saari, E Monier, and NE Selin. 2015. U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. Environ. Sci. Technol. 49 (13): 7580–7588. https://doi.org/10.1021/acs.est.5b01324

  • GBD 2017 Risk Factor Collaborators. 2018. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England), 392(10159), 1923. https://doi.org/10.1016/S0140-6736(18)32225-6

  • Gilliland FD, Berhane K, Rapaport EB, Thomas DC, Avol E, Gauderman WJ, London SJ et al (2001) The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology 12(1):43–54. https://doi.org/10.1097/00001648-200101000-00009

    Article  CAS  Google Scholar 

  • Glad JA, LL Brink, EO Talbott, PC Lee, X Xu, M Saul, and J Rager. 2012. The relationship of ambient ozone and PM2.5 levels and asthma emergency department visits: possible influence of gender and ethnicity. Arch. Environ. Occup. Health 67 (2): 103–108. https://doi.org/10.1080/19338244.2011.598888

  • Goodkind AL, Tessum CW, Coggins JS, Hill JD, Marshall JD (2019) Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions. PNAS 116(18):8775–8780. https://doi.org/10.1073/pnas.1816102116

    Article  CAS  Google Scholar 

  • Heo J, Adams PJ, Gao HO (2016) Public health costs of primary PM2.5 and inorganic PM2.5 precursor emissions in the United States. Environmental Science & Technology 50(11):6061–6070. https://doi.org/10.1021/acs.est.5b06125

    Article  CAS  Google Scholar 

  • Hildebrandt Ruiz L, Yarwood G, 2013. Interactions between organic aerosol and NOy: influence on oxidant production. http://aqrp.ceer.utexas.edu/projectinfoFY12_13/12-012/12-012%20Final%20Report.pdf. Final report for AQRP project (project 12–012). , 12–012

  • Huang Y, Dominici F, Bell ML (2005) Bayesian hierarchical distributed lag models for summer ozone exposure and cardio-respiratory mortality. Environmetrics Vol 16:547–562

  • Hubbell B, Fann N, Levy JI (2009) Methodological considerations in developing local-scale health impact assessments: balancing national, regional, and local data. Air Qual Atmos Health 2(2):99–110. https://doi.org/10.1007/s11869-009-0037-z

    Article  Google Scholar 

  • Interagency Working Group on Social Cost of Carbon. 2013. Technical support document: technical update of the social cost of carbon for regulatory impact analysis under executive order 12866

  • Ito K, De Leon SF, Lippmann M (2005) Associations between ozone and daily mortality—analysis and meta-analysis. Epidemiology 16(4):446–457. https://doi.org/10.1097/01.ede.0000165821.90114.7f

    Article  Google Scholar 

  • Ito K, GD Thurston, and RA Silverman. 2007. Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J. Expo. Sci. Environ. Epidemiol. 17 (December): S45–S60. https://doi.org/10.1038/sj.jes.7500627

  • Jerrett M, Burnett RT, Pope CA, It K, Thurston GD, Krewski D, Shi Y, Calle E, Thun M (2009) Long-term ozone exposure and mortality. N Engl J Med 360(11):1085–1095. https://doi.org/10.1056/NEJMoa0803894

    Article  CAS  Google Scholar 

  • Katsouyanni K, Samet JM, Anderson HR, Atkinson R, Le Tertre A, Medina S, Samoli E et al (2009) Air pollution and health: A European and North American Approach (APHENA). Research Report (Health Effects Institute), no 142(October):5–90

    CAS  Google Scholar 

  • Kloog I, Coull BA, Zanobetti A, Koutrakis P, Schwartz JD (2012) Acute and chronic effects of particles on hospital admissions in new-England. PLoS One 7(4):e34664. https://doi.org/10.1371/journal.pone.0034664

    Article  CAS  Google Scholar 

  • Krewski D, M Jerret, RT Burnett, R Ma, E Hughes, S Yuanli, M Turner, et al. 2009. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. 140. The Health Effects Institute. http://pubs.healtheffects.org/view.php?id=315

  • Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173(6):667–672. https://doi.org/10.1164/rccm.200503-443OC

    Article  CAS  Google Scholar 

  • Lee CJ, Martin RV, Henze DK, Brauer M, Cohen A, van Donkelaar A (2015) Response of global particulate-matter-related mortality to changes in local precursor emissions. Environmental Science & Technology 49(7):4335–4344. https://doi.org/10.1021/acs.est.5b00873

    Article  CAS  Google Scholar 

  • Lee Y, Shindell D, Faluvegi G, Pinder R (2016) Potential impact of a us climate policy and air quality regulations on future air quality and climate change. Atmos Chem Phys 16:5323–5342. https://doi.org/10.5194/acp-16-5323-2016

    Article  CAS  Google Scholar 

  • Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 120(7):965–970. https://doi.org/10.1289/ehp.1104660

    Article  Google Scholar 

  • Levy JI, Chemerynski SM, Sarnat JA (2005) Ozone exposure and mortality: an empiric bayes metaregression analysis. Epidemiology 16(4):458–468

    Article  Google Scholar 

  • Lontzek TS, Cai Y, Judd KL, Lenton TM (2015) Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nature Clim. Change 5(5):441–444. https://doi.org/10.1038/nclimate2570

    Article  Google Scholar 

  • Loughlin DH, Benjey WG, And Nolte CG 2011: ESP v1.0: Methodology for exploring emission impacts of future scenarios in the united states, geosci. Model dev., 4, 287–297, https://doi.org/10.5194/gmd-4-287-2011

  • Mar TF, Koenig JQ (2009) Relationship between visits to emergency departments for asthma and ozone exposure in greater Seattle. Washington Ann Allergy Asthma Immunol 103(6):474–479

  • Mar TF, Koenig JQ, Primomo J (2010) Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma. Washington. Inhal. Toxicol. 22(6):445–448. https://doi.org/10.3109/08958370903575774

  • Mar TF, Larson TV, Stier RA, Claiborn C, Koenig JQ (2004) An analysis of the association between respiratory symptoms in subjects with asthma and daily air pollution in Spokane. Washington Inhal Toxicol 16(13):809–815. https://doi.org/10.1080/08958370490506646

  • Millstein D, Wiser R, Bolinger M, Barbose G (2017) The climate and air-quality benefits of wind and solar power in the United States. Nat Energy 2:17134. https://doi.org/10.1038/nenergy.2017.134

    Article  Google Scholar 

  • Moolgavkar SH (2000) Air pollution and hospital admissions for diseases of the circulatory system in three US metropolitan areas. J Air Waste Manage Assoc 50(7):1199–1206

  • Moore FC, Diaz DB (2015) Temperature impacts on economic growth warrant stringent mitigation policy. Nature Clim Change 5(2):127–131. https://doi.org/10.1038/nclimate2481

    Article  Google Scholar 

  • Mortimer KM, Neas LM, Dockery DW, Redline S, Tager IB (2002) The effect of air pollution on inner-city children with asthma. Eur Resp J 19(4):699–705. https://doi.org/10.1183/09031936.02.00247102

    Article  CAS  Google Scholar 

  • Myhre G, D Shindell, FM Breon, W Collins, J Fuglestvedt, J Huang, D Koch, et al. 2013. Anthropogenic and natural radiative forcing. In climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by H. Zhang, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, et al. Cambridge, UK and New York, NY, USA: Cambridge University Press. http://www.climatechange2013.org/images/report/WG1AR5_Chapter06_FINAL.pdf

  • National Research Council Committee on Health, Environmental, and Other External Costs and Benefits of Energy Production and Consumption (2010) Hidden costs of energy: unpriced consequences of energy production and use. The National Academies Press, Washington, D.C.

    Google Scholar 

  • Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ Pollut 178(July):395–402. https://doi.org/10.1016/j.envpol.2013.03.050

    Article  CAS  Google Scholar 

  • Nsanzineza R, Capps SL, Milford JB (2019) Modeling emissions and ozone air quality impacts of future scenarios for energy and power production in the rocky mountain states. Environmental Science & Technology doi 53:7893–7902. https://doi.org/10.1021/acs.est.9b00356

  • OECD (2012) Mortality risk valuation in environment, health and transport policies. OECD Publishing, Paris. https://doi.org/10.1787/9789264130807-en

  • Ostro B (1987) Air-pollution and morbidity revisited—a specification test. J.Environ.Econ.Manage. 14(1):87–98. https://doi.org/10.1016/0095-0696(87)90008-8

  • Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M (2001) Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 12(2):200–208. https://doi.org/10.1097/00001648-200103000-00012

    Article  CAS  Google Scholar 

  • Ostro B, Rothschild S (1989) Air-pollution and acute respiratory morbidity—an observational study. Environ Res 50(2):238–247. https://doi.org/10.1016/S0013-9351(89)80004-0

    Article  CAS  Google Scholar 

  • Pappin AJ, Mesbah SM, Hakami A, Schott S (2015) Diminishing returns or compounding benefits of air pollution control? The case of NOx and ozone. Environmental Science & Technology 49(16):9548–9566. https://doi.org/10.1021/acs.est.5b00950

    Article  CAS  Google Scholar 

  • Peel JL, Tolbert PE, Klein M, Metzger KB, Flanders WD, Todd K, Mulholland JA, Ryan PB, Frumkin H (2005) Ambient air pollution and respiratory emergency department visits. Epidemiology 16(2):164–174. https://doi.org/10.1097/01.ede.0000152905.42113.db

    Article  Google Scholar 

  • Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, Dominici F (2009) Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 117(6):957–963. https://doi.org/10.1289/ehp.0800185

    Article  CAS  Google Scholar 

  • Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI (2017) Estimating state-specific contributions to PM2.5- and O3 related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125(3):324–332. https://doi.org/10.1289/EHP550

    Article  CAS  Google Scholar 

  • Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103(23):2810–2815

    Article  CAS  Google Scholar 

  • Pope CAR, Dockery DW (1991) Respiratory health and PM10 pollution: a daily time series analysis. Am Rev Respir Dis 144(3 Pt 1):668–674. https://doi.org/10.1164/ajrccm/144.3_Pt_1.668

    Article  Google Scholar 

  • Pouliot G, Rao V, McCarty JL, Soja A (2016) Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources. J Air Waste Manage Assoc

  • Pye HO, Luecken DJ, Xu L, Boyd CM, Ng NL, Baker KR, Ayres BR, Bash JO, Baumann K, Carter WP (2015) Modeling the current and future roles of particulate organic nitrates in the southeastern United States. Environmental Science & Technology 49:14195–14203

    Article  CAS  Google Scholar 

  • Ran L, Loughlin DH, Yang D, Adelman Z, Baek BH, and Nolte CG 2015: ESP v2.0: Enhanced method for exploring emission impacts of future scenarios in the United States—addressing spatial allocation, Geosci. Model Dev., 8, 1775–1787, https://doi.org/10.5194/gmd-8-1775-2015

  • Rudokas J, Miller PJ, Trail MA, Russell AG (2015) Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions. Environ. Sci. Technol. 49(8):5170–5177. https://doi.org/10.1021/es505159z

    Article  CAS  Google Scholar 

  • Saari RK, Selin NE, Rausch S, Thompson TM (2015) A self-consistent method to assess air quality co-benefits from U.S. climate policies. J Air Waste Manage Assoc 65(1):74–89. https://doi.org/10.1080/10962247.2014.959139

    Article  CAS  Google Scholar 

  • Sarnat JA, Sarnat SE, Flanders WD, Chang HH, Mulholland J, Baxter L, Isakov V, Oezkaynak H (2013) Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta. J Expo Sci Environ Epidemiol 23(6):606–615. https://doi.org/10.1038/jes.2013.32

    Article  CAS  Google Scholar 

  • Schildcrout JS, Sheppard L, Lumley T, Slaughter JC, Koenig JQ, Shapiro GG (2006) Ambient air pollution and asthma exacerbations in children: an eight-city analysis. Am J Epidemiol 164(6):505–517. https://doi.org/10.1093/aje/kwj225

    Article  Google Scholar 

  • Schwartz J (2005) How sensitive is the association between ozone and daily deaths to control for temperature? Am J Respir Crit Care Med 171(6):627–631

    Article  Google Scholar 

  • Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11(1):6–10

    Article  CAS  Google Scholar 

  • Sheppard L, Levy D, Norris G, Larson TV, Koenig JQ (1999) Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994. Epidemiology 10(1):23–30. https://doi.org/10.1097/00001648-199901000-00006

    Article  CAS  Google Scholar 

  • Simon H, Baker KR, Phillips S (2012) Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos Environ 61:124–139

    Article  CAS  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2005) A description of the Advanced Research WRF Version 2. NCAR/TN–468+STR. NCAR technical note. National Center for Atmospheric Research, Boulder, CO http://www2.mmm.ucar.edu/wrf/users/docs/arw_v2_070111.pdf

    Google Scholar 

  • Slaughter JC, Kim E, Sheppard L, Sullivan JH, Larson TV, Claiborn C (2005) Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane. Washington J Expo Anal Environ Epidemiol 15(2):153–159. https://doi.org/10.1038/sj.jea.7500382

  • Smith RL, Xu B, Switzer P (2009) Reassessing the relationship between ozone and short-term mortality in U.S. urban communities. Inhalation Toxicology, 2009 21(S2):37–65

  • Smith A (2013) The climate Bonus: co-benefits of climate policy. Routledge. isbn:978-1-84971-340-5

  • Smith AC, Holland M, Korkeala O, Warmington J, Forster D, ApSimon H, Oxley T, Duckens R, Smith SM (2015) Health and environmental co-benefits and conflicts of actions to meet UK carbon targets. Clim Pol 16(3):253–283. https://doi.org/10.1080/14693062.2014.980212

    Article  Google Scholar 

  • Thompson TM, Rausch S, Saari RK, Selin NE (2014) A systems approach to evaluating the air quality co-benefits of US carbon policies. Nature Clim. Change 4(10):917–923. https://doi.org/10.1038/nclimate2342

    Article  Google Scholar 

  • Trail MA, Tsimpidi AP, Liu P, Tsigaridis K, Hu Y, Rudokas JR, Miller PJ, Nenes A, Russell AG (2015) Impacts of potential CO2-reduction policies on air quality in the United States. Environ Sci Technol 49(8):5133–5141. https://doi.org/10.1021/acs.est.5b00473

    Article  CAS  Google Scholar 

  • Trail M, Tsimpidi AP, Liu P, Tsigaridis K, Rudokas J, Miller P, Nenes A, Hu Y, Russell AG (2014) Sensitivity of air quality to potential future climate change and emissions in the United States and major cities. Atmos Environ 94(September):552–563. https://doi.org/10.1016/j.atmosenv.2014.05.079

    Article  CAS  Google Scholar 

  • Tschofen P, Azevedo IL, Muller NZ (2019) Fine particulate matter damages and value added in the US economy. Proc Natl Acad Sci 116(40):19857–19862. https://doi.org/10.1073/pnas.1905030116

    Article  CAS  Google Scholar 

  • Turner MD, Henze DK, Capps SL, Hakami A, Zhao S, Resler J, Carmichael GR, Stanier CO, Baek J, Sandu A, Russell AG, Nenes A, Pinder RW, Napelenok SL, Bash JO, Percell PB, Chai T (2015) Premature deaths attributed to source-specific BC emissions in six urban. Environ Res Lett 10(11):114014. https://doi.org/10.1088/1748-9326/10/11/114014

    Article  CAS  Google Scholar 

  • US EPA. 2012. Regulatory impact analysis for the final revisions to the National Ambient Air Quality Standards for particulate matter. Regulatory impact analysis EPA-452/R-12-005. Research Triangle Park, NC: Office of Air Quality Planning and Standards. http://www.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf

  • US EPA. 2015. Regulatory impact analysis of the final revisions to the National Ambient Air Quality Standards for ground-level ozone. Regulatory impact analysis EPA-452/R-15-007. Research Triange Park, NC: Office of Air Quality Planning and Standards. https://www.epa.gov/naaqs/regulatory-impact-analysis-final-revisions-national-ambient-air-quality-standards-ground-level

  • U.S. Environmental Protection Agency, 2016. 2011 National Emissions Inventory, version 2, Technical Support Document. https://www.epa.gov/sites/production/files/2015-10/documents/nei2011v2_tsd_14aug2015.pdf

  • US EPA, 2018. Environmental benefits mapping and analysis program—community edition: users manual. July 2018. https://www.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf

  • USGCRP, 2018. Impacts, risks, and adaptation in the United States: fourth national climate assessment, volume II. [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 1515 pp. 10/7930/NCA4.2018

  • Wilson AM, Wake CP, Kelly T, Salloway JC (2005) Air pollution, weather, and respiratory emergency room visits in two northern New England cities: an ecological time-series study. Environ Res 97(3):312–321. https://doi.org/10.1016/j.envres.2004.07.010

    Article  CAS  Google Scholar 

  • Wolfe P, Davidson K, Fulcher C, Fann N, Zawacki M, Baker KR (2019) Monetized health benefits attributable to mobile source emission reductions across the United States in 2025. Sci Total Environ 650(2):2490–2498. https://doi.org/10.1016/j.scitotenv.2018.09.273

    Article  CAS  Google Scholar 

  • Woodruff TJ, Grillo J, Schoendorf KC (1997) The relationship between selected causes of Postneonatal infant mortality and particulate air pollution in the United States. Environ Health Perspect 105(6):608–612

    Article  CAS  Google Scholar 

  • Zanobetti A, M Franklin, P Koutrakis, and J Schwartz. 2009. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ. Health 8 (December): 58. https://doi.org/10.1186/1476-069X-8-58

  • Zanobetti A, Schwartz J (2008) Mortality displacement in the association of ozone with mortality—an analysis of 48 cities in the United States. Am J Respir Crit Care Med 177(2):184–189. https://doi.org/10.1164/rccm.200706-823OC

    Article  Google Scholar 

  • Zhou L, Baker KR, Napelenok SL, Pouliot G, Elleman R, O’Neill SM, Urbanski SP, Wong DC (2018) Modeling crop residue burning experiments to evaluate smoke emissions and plume transport. Sci Total Environ 627:523–533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Matt Turner and Shannon Capps for advice and discussion during early stages of this project. We would also like to thank Kirk Baker for assistance in the modeling efforts.

Funding

This work was supported by the NASA Applied Sciences Program (grant no. NNX11AI54G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen E. Brown.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1132 kb)

ESM 2

(XLSX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.E., Henze, D.K. & Milford, J.B. Comparing health benefit calculations for alternative energy futures. Air Qual Atmos Health 13, 773–787 (2020). https://doi.org/10.1007/s11869-020-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-020-00840-8

Keywords

Navigation