Skip to main content
Log in

Application of Artificial Neural Networks to Predict Dry Magnetic Separation of Low-Grade Hematite Fines

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An artificial neural network model to predict the performance of induced roll high-intensity magnetic separator while upgrading low-grade iron ore fines is presented in the present investigation. Key process parameters of induced roll magnetic separator operation, i.e., applied current, speed of rotor, splitter position, particle size, and feed rate, are used as the network input. A feedforward ANN is designed with one hidden layer, with units varying from 9 to 40 and capable of estimating the separation performance (iron content, silica content, iron recovery, and silica rejection of the magnetic product) in an induced roll magnetic separator. Simulated results obtained using the neural network modeling correspond closely to the actual results with a correlation of coefficient (R2) > 0.95 in training and testing stages. The developed models are further used to understand the sensitivity of the studied variables. The effects of speed of the rotor and splitter position are found to be more sensitive to the separation. Furthermore, an optimized solution is designed to predict the best achievable grade-recovery curve for this pre-concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pradip, Met Mater Process6 (1994) 179.

    CAS  Google Scholar 

  2. Jena S, Sahoo H, Rath S, Rao D, Das S, and Das B, Miner Process Extract Metall Rev36 (2015) 174.

    CAS  Google Scholar 

  3. Das B, Prakash S, Bhaumik S, Mohapatra B, and Narasimhan K, Trans Indian Inst Met India44 (1991) 355.

    CAS  Google Scholar 

  4. Li C, Sun H, Bai J, and Li L, J Hazard Mater174 (2010) 71.

    CAS  Google Scholar 

  5. Song S, Lu S, and Lopez-Valdivieso A, Miner Eng15 (2002) 415.

    CAS  Google Scholar 

  6. Filippov L, Severov V, and Filippova I, Int J Miner Process127 (2014) 62.

    CAS  Google Scholar 

  7. Zhang X, Han Y, Sun Y, Lv Y, Li Y, and Tang Z, Miner Process Extract Metall Rev41 (2020) 117.

    CAS  Google Scholar 

  8. Suthers S P, Pinto P, Nunna V, and Nguyen A V, Miner Process Extract Metall Rev40 (2019) 344.

    CAS  Google Scholar 

  9. Nunna V, Hapugoda S, Eswarappa S G, Raparla S K, Kumar R, and Nanda N K, Miner Process Extract Metall Rev40 (2019) 356.

    CAS  Google Scholar 

  10. Song S, Zhang G, Luo Z, and Lv B, Miner Process Extract Metall Rev40 (2019) 307.

    Google Scholar 

  11. Xu X, Chen J, Luo Z, Tang L, Zhao Y, Lv B, Fu Y, and Chen C, Miner Process Extract Metall Rev40 (2019) 299.

    CAS  Google Scholar 

  12. Moura L C, André F P, Miceli H, Neumann R, and Tavares L M, Miner Process Extract Metall Rev40 (2019) 333.

    CAS  Google Scholar 

  13. Eswaraiah C, Soni R K, Tripathy S K, and Filippov L O, Miner Process Extract Metall Rev 1 (2019).

  14. Dwari R K, Rao D S, and Reddy P S R, Int J Min Sci Technol23 (2013) 1.

    CAS  Google Scholar 

  15. Dwari R, Rao D, and Reddy P, J Inst Eng India Ser D95 (2014) 115.

    CAS  Google Scholar 

  16. Tripathy S K, Banerjee P, and Suresh N, Powder Technol264 (2014) 527.

    CAS  Google Scholar 

  17. Tripathy S K, Banerjee P, Suresh N, Murthy Y R, and Singh V, Miner Process Extract Metall Rev38 (2017) 339.

    CAS  Google Scholar 

  18. Mohanty I and Bhattacherjee D, Computational Approaches to Materials Design: Theoretical and Practical Aspects, IGI Global, pp. 267–300 (2016).

  19. Jorjani E, Chelgani S C, and Mesroghli S, Miner Eng20 (2007) 1285.

    CAS  Google Scholar 

  20. Al-Thyabat S, J China Univ Min Technol18 (2008) 418.

    CAS  Google Scholar 

  21. Cilek E, Miner Eng15 (2002) 1095.

    CAS  Google Scholar 

  22. Moolman D, Aldrich C, Van Deventer J, and Stange W, Int J Miner Process43 (1995) 193.

    CAS  Google Scholar 

  23. Massinaei M and Doostmohammadi R, Miner Eng23 (2010) 83.

    CAS  Google Scholar 

  24. Labidi J, Pelach M, Turon X, and Mutje P, Chem Eng Process Process Intensif46 (2007) 314.

    CAS  Google Scholar 

  25. Kalyani V, Charan T G, Haldar D, Sinha A, and Suresh N, Int J Coal Prep Util28 (2008) 94.

    CAS  Google Scholar 

  26. Charan T G, Kalyani V, Sharma K, Kumar L, Kumari S, and Sinha A, Int J Coal Prep Util34 (2014) 229.

    CAS  Google Scholar 

  27. Kalyani V, Pallavika, Chaudhuri S, Gouri Charan T, Haldar D, Kamal K, Badhe Y, Tambe S, and Kulkarni B, Miner Process Extract Metall Rev29 (2007) 130.

    Google Scholar 

  28. Özbayoğlu G, Özbayoğlu A M, and Özbayoğlu M E, Int J Miner Process85 (2008) 93.

    Google Scholar 

  29. Chelgani S C, Hower J C, Jorjani E, Mesroghli S, and Bagherieh A, Fuel Process Technol89 (2008) 13.

    CAS  Google Scholar 

  30. Jämsä-Jounela S L and Oja M, Filtrat Sep37 (2000) 39.

    Google Scholar 

  31. Raman G S and Klima M S, Miner Process Extract Metall Rev38 (2017) 47.

    CAS  Google Scholar 

  32. Raman G S, Klima M S, and Bishop J M, Int J Miner Process158 (2017) 76.

    CAS  Google Scholar 

  33. Raman G S and Klima M S, Miner Process Extract Metall Rev40 (2019) 148.

    CAS  Google Scholar 

  34. Panda L and Tripathy S K, Int J Min Sci Technol24 (2014) 461.

    Google Scholar 

  35. Lai K C, Lim S K, Teh P C, and Yeap K H, Proc Comput Sci91 (2016) 372.

    Google Scholar 

  36. Fujiwara E, dos Santos M F M, Schenkel E A, Ono E, and Suzuki C K, Miner Process Extract Metall Rev36 (2015) 281.

    CAS  Google Scholar 

  37. Karimi M, Dehghani A, Nezamalhosseini A, and Talebi S, J S Afr Inst Min Metall110 (2010) 207.

    Google Scholar 

  38. Chaurasia R C and Nikkam S, Part Sci Technol35 (2017) 93.

    CAS  Google Scholar 

  39. Tripathy S K, Singh V, Murthy Y R, Banerjee P, and Suresh N, Int J Miner Process160 (2017) 16.

    CAS  Google Scholar 

  40. Tripathy S K and Suresh N, Adv Powder Technol28 (2017) 1092.

    Google Scholar 

  41. Zong Q X, Fu L Z, and Bo L, EDP Sciences, p. 02019 (2018).

  42. Mohanty I, Bhattacharjee D, and Datta S, Comput Mater Sci50 (2011) 2331.

    CAS  Google Scholar 

  43. Mohanty I, Datta S, and Bhattacharjee D, Mater Manuf Process24 (2008) 100.

    Google Scholar 

  44. Haykin S, Neural Networks: A Comprehensive Foundation, Prentice Hall PTR (1994).

  45. Mohanty I, Sarkar S, Jha B, Das S, and Kumar R, Ironmak Steelmak41 (2014) 618.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the management of Tata Steel Ltd. for the support and permission to publish this study. SKT would like to acknowledge Labex Resources 21 supported by the French National Research Agency through the national program “Investissements d’Avenir” [reference ANR–10–LABX–21] for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Tripathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, S.K., Mohanty, I. & Filippov, L.O. Application of Artificial Neural Networks to Predict Dry Magnetic Separation of Low-Grade Hematite Fines. Trans Indian Inst Met 73, 1797–1807 (2020). https://doi.org/10.1007/s12666-020-01985-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01985-x

Keywords

Navigation