Skip to main content

Advertisement

Log in

Influence of Ageing Time on Mechanical Properties and Weibull Probability Distribution of Tensile Strength of Ternary Al–Zn–Mg Alloy Produced from Aluminium and Zinc Scrap

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, a cast alloy of Al–Zn–Mg was developed from aluminium from recycled beverage cans and zinc scraps from battery and the influence of age-hardening heat treatment of the alloy on mechanical properties and reliability analysis on the tensile strength was investigated. The cast Al–Zn–Mg alloy was subjected to age-hardening heat treatment at different times. The aluminium, cast alloy and age-hardened alloy were characterized using XRF, XRD and TEM. The mechanical properties were investigated using a hardness test, impact strength test and percentage elongation. Also, the tensile strength data were subjected to a reliability analysis using Weibull probability distribution. From the results, it shows that 24 h ageing time is enough to have optimum mechanical properties due to an increase in size of the stable MgZn2s phase particles. The reliability analysis shows that the alloy aged at 24 h has tensile strength value (229.72 MPa) in the range reported for Al–Zn–Mg alloy’s temper designations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manjunath GK, Udaya Bhat K, Preetham Kumar G V., Ramesh MR.. Trans Indian Inst Met. 2018;71:1919.

    Article  CAS  Google Scholar 

  2. Cui J, Roven HJ. 2010;20:2057.

    CAS  Google Scholar 

  3. Pontevedra V, Baffari D, Buffa G, et al.. Procedia Manuf. 2019;29:560.

    Article  Google Scholar 

  4. Chiba R, Nakamura T, Kuroda M.. J Mater Process Technol. 2011;211:1878.

    Article  CAS  Google Scholar 

  5. Ni H, Sun B, Jiang H, Ding W. Mater Sci Eng A. 2003;352:294.

    Article  Google Scholar 

  6. Güley V, Ben Khalifa N, Tekkaya AE. Int J Mater Form. 2010;3:853.

    Article  Google Scholar 

  7. Khamis SS, Lajis MA, Albert RAO. Procedia CIRP. 2015;26:477.

    Article  Google Scholar 

  8. Shamsudin S, Lajis MA, Zhong ZW. 2016;40:256.

    Google Scholar 

  9. Mehtedi M El, Forcellese A, Mancia T, Simoncini M, Spigarelli S. Procedia CIRP. 2019;79:638.

    Article  Google Scholar 

  10. Kazeem A, Badarulzaman NA, Fahmin W, Wan F. Mater Lett. 2019;7475:127067.

    Google Scholar 

  11. Farahany S, Ourdjini A, Idris MH, Takaloo A V., Thai LT.. 2013;52:208.

    CAS  Google Scholar 

  12. ASTM E8M-13a. 2014;(C):1.

  13. Quinn JB, Quinn GD. 2010;26:135.

    CAS  Google Scholar 

  14. Arczewska P, Polak MA, Penlidis A. 2019;31(2).

  15. Gorjan L, Ambrožič M. J Eur Ceram Soc. 2012;32:1221.

    Article  CAS  Google Scholar 

  16. Muazu A, Yajid Muhamad Azizi Mat N, Ahmad. J Teknol. 2016;9:73.

    Google Scholar 

  17. Yatongchai C, Wren AW, Curran DJ, Hornez JC, Mark R T. 2013;21:95.

    CAS  Google Scholar 

  18. Wu D, Zhou J, Li Y. J Eur Ceram Soc. 2006;26:1099. https://doi.org/10.1016/j.jeurceramsoc.2005.01.044

    Article  CAS  Google Scholar 

  19. Nie X, Zhang L, Du Y. Trans Nonferrous Met Soc China. 2014;24:2138.

    Article  CAS  Google Scholar 

  20. LI B, PAN Q lin, CHEN C ping, YIN Z min. Trans Nonferrous Met Soc China (English Ed). 2016;26:2263.

  21. ASTM E0008.

  22. ASTM E384.

  23. ASTM E 23-12c. Stand Test Methods Notched Bar Impact Test Met Mater.

  24. ASM Met Handbook, Vol 02. 1997;2.

  25. Aliyu IK, Saheb N, Hassan SF, Al-Aqeeli N. Metals (Basel). 2015;5:70.

    Article  CAS  Google Scholar 

  26. Saboori A, Pavese M, Badini C, Fino P. Acta Metall Sin (English Lett). 2017;30:675.

  27. Rosalie J, Hidetoshi Somekawa SA, Toshiji M. Philos Mag A. 2010;3355-3374:3355.

    Google Scholar 

  28. Gopala Krishna K, Sivaprasad K, Venkateswarlu K, Hari Kumar KC. Mater Sci Eng A. 2012;535:129.

    Article  CAS  Google Scholar 

  29. Lin YC, Zhang JL, Liu G, Liang YJ. Mater Des. 2015;83:866.

    Article  CAS  Google Scholar 

  30. Tang LEI, Xu G, Deng Y, Gan HAO, Ma A. JOM. 2017.

  31. Sheng-dan LIU, Wen-bo L, Jian-guo T. 2013:4.

  32. Acer E, Çadirli E, Erol H, Kirindi T, Gündüz M. Mater Sci Eng A. 2016;662:144.

    Article  CAS  Google Scholar 

  33. Gür CH, Yildiz I. Mater Sci Eng A. 2004;382:395.

    Article  Google Scholar 

  34. Raghunathan R, Prabhu KN, Hegde TG. Trans Indian Inst Met. 2014;67:997.

    Article  CAS  Google Scholar 

  35. Abubakar M, Basheer U, Ahmad N. J Assoc Arab Univ Basic Appl Sci. 2017;24:81.

    Google Scholar 

  36. Fangli YU, Jianfeng Y, Yaohui XUE, Jun DU, Yuan LU. 2009;32:177.

    Google Scholar 

Download references

Acknowledgements

Special thanks go to Directorate of Research, Innovation and Partnership, Bayero University, Kano, for giving financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muazu Abubakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abubakar, M., Usman, M. Influence of Ageing Time on Mechanical Properties and Weibull Probability Distribution of Tensile Strength of Ternary Al–Zn–Mg Alloy Produced from Aluminium and Zinc Scrap. Trans Indian Inst Met 73, 1827–1836 (2020). https://doi.org/10.1007/s12666-020-01995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01995-9

Keywords

Navigation