Skip to main content
Log in

An Experimentally Validated Computational Model of Damage Buildup in the Pilgering of AISI 321 Steel: Influence of Process Parameters

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Detailed finite element simulations in conjunction with experimental analysis of cold pilger processing were carried out to investigate the deformation behavior of an AISI321 austenitic stainless steel. The effects of process parameters such as feed rate and turn angle on damage buildup were also evaluated. By considering compressive stresses, a new revised Latham–Cockcraft damage factor was obtained as an indicator value for the determination of the optimum conditions. It was found that the radial and hoop strains in all friction conditions were compressive, while the axial strains were observed to be tensile. The amount of strain was also higher on the outside of the tube, as compared to the inner one. By considering fatigue cycles of a tube element during the process, the feed rate of 8 mm, turn angle of 60° and the lowest coefficient of friction with the minimum damage value were determined as an optimum condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Strehlau O, TPJ17 (2006) 32.

    Google Scholar 

  2. Ragger K S, Kaiser R, Paal J, Fluch R, and Buchmayr B, Assoc Int Roll Pass Des Roll Mill Eng75 (2014) 28.

    Google Scholar 

  3. Kumar G, Balo S, Dhoble A, Singh J, Singh R, Srivastava D, Dey G K, and Samajdar I, Met Mat Trans A48 (2017) 2844.

    Article  CAS  Google Scholar 

  4. Abe H, and Furugen M, Mat Trans51 (2010) 1200.

    Article  CAS  Google Scholar 

  5. Pociecha D, Boryczko B, Osika J, and Mroczkowski M, Arch Civ Mech Eng14 (2014) 376.

    Article  Google Scholar 

  6. Siebel E, and Neumann F W, Stahl und Eisen74 (1954) 139.

    Google Scholar 

  7. Yoshida H, Matsui T, Otani T, and Mandai K, Ann CIRP24 (1975) 191.

    Google Scholar 

  8. Furugen M, and Hayashi C, J Mech Work Technol10 (1984) 173.

    Article  Google Scholar 

  9. Aubin J L, Girard E, and Montmitonnet P, ASTM STP (eds) AM Garde & EM Bradley 1245 (1994) 245.

  10. Mulot S, Hacquin A, Montmitonnet P, and Aubin J L, J Mater Proc Technol60 (1996) 505.

    Article  Google Scholar 

  11. Montmitonnet P, Logé R, Hamery M, Chastel Y, Doudoux J L, and Aubin J L, J Mater Proc Technol125 (2002) 814.

    Article  Google Scholar 

  12. Gupta A K, Krishnamurthy H N, Singh Y, Prasad K M, and Singh S K, Mater Des45 (2013) 616.

    Article  CAS  Google Scholar 

  13. Talonen J, Aspegren P, and Hänninen H, Mater Sci Technol20 (2004) 1506.

    Article  CAS  Google Scholar 

  14. Haj M, Mansouri H, Vafaei R, Ebrahimi G R, and Kanani A, Int J Min Met Mater20 (2013) 529.

    Article  CAS  Google Scholar 

  15. Tiamiyu A A, Tari V, Szpunar J A, Odeshi A G, and Khan A K, Int J Plast107 (2018) 79.

    Article  CAS  Google Scholar 

  16. Angel T J, J Iron Steel Inst177 (1954) 165.

    CAS  Google Scholar 

  17. Schramm R E, and Reed R P, Met Trans A6 (1975) 1345.

    Article  Google Scholar 

  18. Rhodes C G, and Thompson A W, Met Trans A8 (1977) 1901.

    Article  Google Scholar 

  19. Ferreira P J, and Müllner P, Acta Mater46 (1998) 4479.

    Article  CAS  Google Scholar 

  20. Lecroisey F, and Pineau A, Met Trans B3 (1972) 391.

    Article  Google Scholar 

  21. Abrassart F, Met Trans4 (1973) 2205.

    Article  CAS  Google Scholar 

  22. Latanision R M, and Ruff A W, Met Trans2 (1971) 505.

    Article  CAS  Google Scholar 

  23. Leban M B, and Tisu R, Eng Fail Anal33 (2013) 430.

    Article  CAS  Google Scholar 

  24. Gauss C, Souza Filho I R, Sandim M J R, Suzuki P A, Ramirez A J, and Sandim H R Z, Mater Sci Eng A651 (2016) 507.

    Article  CAS  Google Scholar 

  25. Spencer K, Embury J D, Conlon K T, Véron M, and Bréchet Y, Mater Sci Eng A387 (2004) 873.

    Article  Google Scholar 

  26. Shirdel M, Mirzadeh H, and Parsa M H, Mater Char103 (2015) 150.

    Article  CAS  Google Scholar 

  27. Wang B F, Liu Z L, Wang X Y, and Li Z Z, Mater Sci Eng A610 (2014) 301.

    Article  CAS  Google Scholar 

  28. Nkhoma R K C, Siyasiya C W, and Stumpf W E, J All Compd595 (2014) 103.

    Article  CAS  Google Scholar 

  29. Byun T S, Acta Mater51 (2003) 3063.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mohammad Sharifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musazadeh, M.H., Mohammad Sharifi, E., Vafaei, R. et al. An Experimentally Validated Computational Model of Damage Buildup in the Pilgering of AISI 321 Steel: Influence of Process Parameters. Trans Indian Inst Met 73, 1843–1851 (2020). https://doi.org/10.1007/s12666-020-01987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01987-9

Keywords

Navigation