Skip to main content
Log in

Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present study, the use of heterogeneous photocatalysis TiO2/UV coupled to an activated sludge reactor was evaluated as an alternative treatment for the leachate coming from a Landfill, located in Cucuta (Colombia). TiO2 (Degussa P-25) between 100 and 600 mg.L−1 was used as a catalyst, semi-continuous type reactors for the photocatalysis, a batch for the biological stage, UV light with accumulated energies from 20 to 60 kJ.L−1 were also used, a constant concentration of H2O2 was used as an adjuvant in all tests. The research consisted of four main phases: leachate characterization, biological treatment, optimization of photocatalytic and AOP-biological coupling. For the optimization of the photocatalytic step, an experimental design was carried out through the statistical program Statgraphics Centurion XV of factorial type 3^2 (3 levels 2 variables), modeling the results by means of a response surface, the variables of the pH and the concentration of the catalyst were included, having this as input for the response of interest the percentage (%) of DOC removal. The biological process itself provided a removal of 38 and 24% for COD and DOC, respectively. The AOP-biological coupling provided a removal of 68 and 76% in terms of COD and DOC, respectively. Thus, the coupling significantly improves the overall efficiency of the process by more than 50%, which represents a promising improvement compared to the removal of organic matter for the treatment of the same type of water using only the biological process. The results show a viable alternative for the treatment of leachate because higher removal levels are achieved in residence times, which are considered shorter than the ones in conventional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pastore C et al (2018) Comparison of different types of landfill leachate treatments by employment of nontarget screening to identify residual refractory organics and principal component analysis. Sci Total Environ 635:984–994. https://doi.org/10.1016/j.scitotenv.2018.04.135

    Article  CAS  Google Scholar 

  2. Vahabian M, Hassanzadeh Y, Marofi S (2019) Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environ Monit Assess 191(2):1–19. https://doi.org/10.1007/s10661-019-7215-8

    Article  CAS  Google Scholar 

  3. Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 258:120694. https://doi.org/10.1016/j.jclepro.2020.120694

    Article  CAS  Google Scholar 

  4. Chemlal R et al (2014) Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol Eng 73:281–289. https://doi.org/10.1016/j.ecoleng.2014.09.043

    Article  Google Scholar 

  5. He H, Ma H, Liu L (2020) Combined photocatalytic pre-oxidation reactor and sequencing batch bioreactor for advanced treatment of industrial wastewater. J Water Process Eng 36:101259. https://doi.org/10.1016/j.jwpe.2020.101259

    Article  Google Scholar 

  6. Elleuch L et al (2020) A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J Hazard Mater 382:121119. https://doi.org/10.1016/j.jhazmat.2019.121119

    Article  CAS  Google Scholar 

  7. Hassan M, Wang X, Wang F, Wu D, Hussain A, Xie B (2017) Coupling ARB-based biological and photochemical (UV/TiO 2 and UV/S 2 O 8 2− ) techniques to deal with sanitary landfill leachate. Waste Manag 63:292–298. https://doi.org/10.1016/j.wasman.2016.09.003

    Article  CAS  Google Scholar 

  8. Padovan RN, Azevedo EB (2015) Combining A Sequencing Batch Reactor With Heterogeneous Photocatalysis (TiO2/UV) For Treating A Pencil Manufacturer’s Wastewater. Brazilian J Chem Eng 32(1):99–106. https://doi.org/10.1590/0104-6632.20150321s00003103

    Article  CAS  Google Scholar 

  9. Silva LS, Gonçalves MMM, Raddi de Araujo LR (2019) Combined photocatalytic and biological process for textile wastewater treatments. Water Environ Res 91(11):1490–1497. https://doi.org/10.1002/wer.1143

    Article  CAS  Google Scholar 

  10. Borges ME, Sierra M, Méndez-Ramos J, Acosta-Mora P, Ruiz-Morales JC, Esparza P (2016) Solar degradation of contaminants in water: TiO2 solar photocatalysis assisted by up-conversion luminescent materials. Sol Energy Mater Sol Cells 155:194–201. https://doi.org/10.1016/j.solmat.2016.06.010

    Article  CAS  Google Scholar 

  11. Talwar S, Sangal VK, Verma A (2018) Feasibility of using combined TiO2 photocatalysis and RBC process for the treatment of real pharmaceutical wastewater. J Photochem Photobiol A Chem 353:263–270. https://doi.org/10.1016/j.jphotochem.2017.11.013

    Article  CAS  Google Scholar 

  12. Vela N et al (2018) Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. J Photochem Photobiol A Chem 353:271–278. https://doi.org/10.1016/j.jphotochem.2017.11.040

    Article  CAS  Google Scholar 

  13. D. Becerra Moreno, “Acople De Procesos Fotocatalíticos Y Biológicos Para El Tratamiento De Aguas Residuales Con Residuos De Plaguicidas,” Universidad Del Valle, 2010.

  14. OCDE (Organización para la cooperación y el desarrollo económico), “Lodos Activados, Prueba de Inhibición de la Respiración (Oxidación de Carbono y Amonio),” 1998.

  15. OCDE (Organización para la cooperación y el desarrollo económico), “Ensayo de Biodegradabilidad Inherente: OECD302 Zahn-Wellens / Método EMPA,” 1992.

  16. Hassan M, Zhao Y, Xie B (2016) Employing TiO 2 photocatalysis to deal with landfill leachate: Current status and development. Chem Eng J 285:264–275. https://doi.org/10.1016/j.cej.2015.09.093

    Article  CAS  Google Scholar 

  17. Malini TP, Selvi JA, Arthanareeswari M, Kamaraj P (2019) Photocatalytic Degradation of Organo Phosphorus Herbicide Anilofos in Aqueous Solution Using TiO2 (Degussa P25) Photocatalyst. Mater Today Proc 14:574–579. https://doi.org/10.1016/j.matpr.2019.04.181

    Article  CAS  Google Scholar 

  18. Ammari Y, El Atmani K, Bay L, Bakas I, Qourzal S, Ait Ichou I (2020) Elimination of a mixture of two dyes by photocatalytic degradation based on TiO2 P-25 Degussa. Mater. Today Proc 22:126–129. https://doi.org/10.1016/j.matpr.2019.08.142

    Article  CAS  Google Scholar 

  19. Cai F-F, Yang Z-H, Huang J, Zeng G-M, Wang L, Yang J (2014) Application of cetyltrimethylammonium bromide bentonite–titanium dioxide photocatalysis technology for pretreatment of aging leachate. J Hazard Mater 275:63–71. https://doi.org/10.1016/j.jhazmat.2014.04.050

    Article  CAS  Google Scholar 

  20. Murgolo S et al (2017) A new supported TiO 2 film deposited on stainless steel for the photocatalytic degradation of contaminants of emerging concern. Chem Eng J 318:103–111. https://doi.org/10.1016/j.cej.2016.05.125

    Article  CAS  Google Scholar 

  21. Abdel-Maksoud YK, Imam E, Ramadan AR (2018) Sand supported TiO2 photocatalyst in a tray photo-reactor for the removal of emerging contaminants in wastewater. Catal Today 313:55–62. https://doi.org/10.1016/j.cattod.2017.10.029

    Article  CAS  Google Scholar 

  22. Saggioro EM et al (2014) Solar CPC pilot plant photocatalytic degradation of bisphenol A in waters and wastewaters using suspended and supported-TiO2. Influence of photogenerated species. Environ Sci Pollut Res 21(21):12112–12121. https://doi.org/10.1007/s11356-014-2723-0

    Article  CAS  Google Scholar 

  23. Hossain MK et al (2018) A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik (Stuttg) 171:507–516. https://doi.org/10.1016/j.ijleo.2018.05.032

    Article  CAS  Google Scholar 

  24. Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Agüera A, Puma GL, Malato S (2012) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater 211–212:131–137. https://doi.org/10.1016/j.jhazmat.2011.09.008

    Article  CAS  Google Scholar 

  25. Miranda SM et al (2015) Solar photocatalytic gas-phase degradation of n-decane—a comparative study using cellulose acetate monoliths coated with P25 or sol-gel TiO2 films. Environ Sci Pollut Res 22(2):820–832. https://doi.org/10.1007/s11356-014-2952-2

    Article  CAS  Google Scholar 

  26. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A Chem 216(2–3):179–182. https://doi.org/10.1016/j.jphotochem.2010.07.024

    Article  CAS  Google Scholar 

  27. Joseph K, Raj A, Viswanathan B (2009) Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem 48:1378–1382

    Google Scholar 

  28. Lachheb H, Guillard C, Lassoued H, Haddaji M, Rajah M, Houas A (2017) Photochemical oxidation of styrene in acetonitrile solution in presence of H 2 O 2, TiO 2 /H 2 O 2 and ZnO/H 2 O 2. J Photochem Photobiol A Chem 346:462–469. https://doi.org/10.1016/j.jphotochem.2017.06.026

    Article  CAS  Google Scholar 

  29. Han E, Vijayarangamuthu K, Youn J, Park Y-K, Jung S-C, Jeon K-J (2018) Degussa P25 TiO 2 modified with H 2 O 2 under microwave treatment to enhance photocatalytic properties. Catal Today 303:305–312. https://doi.org/10.1016/j.cattod.2017.08.057

    Article  CAS  Google Scholar 

  30. Fu D, Huang Y, Zhang X, Kurniawan TA, Ouyang T (2017) Uncovering potentials of integrated TiO2(B) nanosheets and H2O2 for removal of tetracycline from aqueous solution. J Mol Liq 248:112–120. https://doi.org/10.1016/j.molliq.2017.10.020

    Article  CAS  Google Scholar 

  31. Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Di Somma I (2015) Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B 170–171:90–123. https://doi.org/10.1016/j.apcatb.2014.12.050

    Article  CAS  Google Scholar 

  32. Borges ME, Sierra M, Cuevas E, García RD, Esparza P (2016) Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol Energy 135:527–535. https://doi.org/10.1016/j.solener.2016.06.022

    Article  CAS  Google Scholar 

  33. D. R. Giraldo Valentín, “Eficiencia del proceso de fotocatálisis heterogénea con tio2 y h2o2 en la reducción de dbo5 y dqo de los lixiviados del botadero la mejorada el tambo Huancayo,” Repos. Inst. - UAP, 2016.

  34. Rocha EMR, Vilar JP, Fonseca A, Saraiva I, Boaventura RAR (2011) Landfill leachate treatment by solar-driven AOPs/H 2 O 2; Fe 2+ /H 2 O 2 /UV; TiO 2 /H 2 O 2 /UV; Pilot Plant with CPCs. Sol Energy 85:46–56. https://doi.org/10.1016/j.solener.2010.11.001

    Article  CAS  Google Scholar 

  35. LM Losada, EJL Castillo, EAO Restrepo, EAS Galvis, RAT Palma, (2017) “Tratamiento de aguas contaminadas con colorantes mediante fotocatálisis con TiO2 usando luz artificial y solar. Prod + Limpia, 12(2)

  36. R. Ramalho, “Introduction to Wastewater Treatment Processes - R Ramalho - Google Libros,” 1977, 403.

  37. Becerra D et al (2020) Coupling of heterogeneous photocatalysis and aerobic biological process of activated sludge to treat wastewater containing Chlorpyrifos. Ing Y Compet Rev CIENTÍFICA y TECNOLÓGICA 22:13. https://doi.org/10.25100/iyc.v22i1.8135

    Article  Google Scholar 

  38. E. A. Solana, “Contribución al tratamiento de lixiviados de vertedero de residuos sólidos urbanos mediante procesos de oxidación avanzada,” Universidad de Cantabria, departamento de Ingeniería Química y Orgánica, España, 2013.

  39. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber J (2006) Leachate detoxification by combination of biological and TiO2-photocatalytic processes. Water Sci Technol 53:181–190

    Article  CAS  Google Scholar 

  40. S. P. Cho, S. C. Hong, and S.-I. Hong, “Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds,” 2002.

  41. Arshad R et al (2020) Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.01.062

    Article  Google Scholar 

  42. Boutiti A, Zouaghi R, Bendjabeur SE, Guittonneau S, Sehili T (2017) Photodegradation of 1-hexyl-3-methylimidazolium by UV/H2O2 and UV/TiO2: Influence of pH and chloride. J Photochem Photobiol A Chem 336:164–169. https://doi.org/10.1016/j.jphotochem.2016.12.030

    Article  CAS  Google Scholar 

  43. Kaabeche ONEH, Zouaghi R, Boukhedoua S, Bendjabeur S, Sehili T (2019) A Comparative Study on Photocatalytic Degradation of Pyridinium Based Ionic Liquid by TiO2 and ZnO in Aqueous Solution. Int J Chem React Eng. https://doi.org/10.1515/ijcre-2018-0253

    Article  Google Scholar 

  44. A. Mahmoodi, S. Mahmood Mehdinia, A. Rahmani, and H. Nassehinia, “IRANIAN JOURNAL OF CATALYSIS Investigation efficiency of nano photocatalytic compound of TiO 2 and rice husk silica in removal of reactive red 198 dye from synthetic aqueous solutions.”

  45. Lu D, Yang M, Fang P, Li C, Jiang L (2017) Enhanced photocatalytic degradation of aqueous phenol and Cr(VI) over visible-light-driven Tb x O y loaded TiO 2 -oriented nanosheets. Appl Surf Sci 399:167–184. https://doi.org/10.1016/j.apsusc.2016.12.077

    Article  CAS  Google Scholar 

  46. Chen D et al (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.121725

    Article  Google Scholar 

  47. Moreira NFF et al (2018) Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Res 135:195–206. https://doi.org/10.1016/j.watres.2018.01.064

    Article  CAS  Google Scholar 

  48. Luo H, Zeng Y, Cheng Y, He D, Pan X (2020) Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  Google Scholar 

  49. Moraes Da Costa F, Dario S, Daflon A, Bila DM, Valeria Da Fonseca F, Campos JC (2018) Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manag 76:606–613. https://doi.org/10.1016/j.wasman.2018.02.030

    Article  CAS  Google Scholar 

  50. Silva TFCV et al (2013) Multistage treatment system for raw leachate fromsanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial - Biodegradability enhancement and evolution profile of trace pol. Water Res 47(16):6167–6186. https://doi.org/10.1016/j.watres.2013.07.036

    Article  CAS  Google Scholar 

  51. Wang K, Li L, Tan F, Wu D (2018) Treatment of Landfill Leachate Using Activated Sludge Technology: A Review. Archaea. https://doi.org/10.1155/2018/1039453

    Article  Google Scholar 

  52. Castillo E, Vergara M, Moreno Y (2006) “Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Manage. https://doi.org/10.1016/j.wasman.2006.08.003

    Article  Google Scholar 

  53. Arij Y et al (2018) “Performance of pilot scale anaerobic biofilm digester (ABD) for the treatment of leachate from a municipal waste transfer station. Biores Technol. https://doi.org/10.1016/j.biortech.2018.03.131

    Article  Google Scholar 

  54. Wu Q et al (2020) Peculiar synergetic effect of γ-Fe2O3 nanoparticles and graphene oxide on MIL-53 (Fe) for boosting photocatalysis. Chem Eng J 390:124615. https://doi.org/10.1016/j.cej.2020.124615

    Article  CAS  Google Scholar 

  55. Zhu L et al (2020) Photo-catalytic pretreatment of biomass for anaerobic digestion using visible light and Nickle oxide (NiOx) nanoparticles prepared by sol gel method. Renew Energy 154:128–135. https://doi.org/10.1016/j.renene.2020.02.119

    Article  CAS  Google Scholar 

  56. Védrine JC (2019) Importance, features and uses of metal oxide catalysts in heterogeneous catalysis. Chinese J Catal 40(11):1627–1636. https://doi.org/10.1016/S1872-2067(18)63162-6

    Article  Google Scholar 

  57. Al-Dawery SK (2013) Photo-catalyst degradation of tartrazine compound in wastewater using Tio2 and UV light. J Eng Sci Technol 8(6):683–691

    Google Scholar 

  58. Chekir N et al (2017) A comparative study of tartrazine degradation using UV and solar fixed bed reactors. Int J Hydrogen Energy 42(13):8948–8954. https://doi.org/10.1016/j.ijhydene.2016.11.057

    Article  CAS  Google Scholar 

  59. Qian R et al (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal Today 335:78–90. https://doi.org/10.1016/j.cattod.2018.10.053

    Article  CAS  Google Scholar 

  60. Díez AM et al (2018) A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support. Chem Eng J 343:597–606. https://doi.org/10.1016/j.cej.2018.03.041

    Article  CAS  Google Scholar 

  61. Monteagudo JM, Durán A, Martín IS, Vellón B (2020) Photocatalytic degradation of aniline by solar/TiO2 system in the presence of the electron acceptors Na2S2O8 and H2O2. Sep Purif Technol 238:116456. https://doi.org/10.1016/j.seppur.2019.116456

    Article  CAS  Google Scholar 

  62. Kosera VS, Cruz TM, Chaves ES, Tiburtius ERL (2017) Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst. J Photochem Photobiol A Chem 344:184–191. https://doi.org/10.1016/j.jphotochem.2017.05.014

    Article  CAS  Google Scholar 

  63. Liu J, Wang Y, Ma J, Peng Y, Wang A (2019) A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloys Compd 783:898–918. https://doi.org/10.1016/j.jallcom.2018.12.330

    Article  CAS  Google Scholar 

  64. Souza RP et al (2016) Photocatalytic activity of TiO2, ZnO and Nb2O5 applied to degradation of textile wastewater. J Photochem Photobiol A Chem 329:9–17. https://doi.org/10.1016/j.jphotochem.2016.06.013

    Article  CAS  Google Scholar 

  65. Çifçi DI, Meriç S (2015) Optimization of suspended photocatalytic treatment of two biologically treated textile effluents using TiO2 and ZnO catalysts. Glob Nest J 17(4):653–663. https://doi.org/10.30955/gnj.001715

    Article  Google Scholar 

  66. Nomura Y, Fukahori S, Fujiwara T (2020) Removal of 1,4-dioxane from landfill leachate by a rotating advanced oxidation contactor equipped with activated carbon/TiO2 composite sheets. J Hazard Mater 383:121005. https://doi.org/10.1016/j.jhazmat.2019.121005

    Article  CAS  Google Scholar 

  67. Gossard A, Lepeytre C (2017) An innovative green process for the depollution of Cr(VI)-contaminated surfaces using TiO2-based photocatalytic gels. J Environ Chem Eng 5(6):5573–5580. https://doi.org/10.1016/j.jece.2017.10.026

    Article  CAS  Google Scholar 

  68. Fang Z, Hu Y, Cheng J, Chen Y (2019) Continuous removal of trace bisphenol A from water by high efficacy TiO2 nanotube pillared graphene-based macrostructures in a photocatalytically fluidized bed. Chem Eng J 372:581–589. https://doi.org/10.1016/j.cej.2019.04.129

    Article  CAS  Google Scholar 

  69. de Matos Rodrigues MH et al (2019) “Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0,8Gd0,2O2-δ/TiO2 particles. J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.151711

    Article  Google Scholar 

  70. Castañeda-Juárez M, Martínez-Miranda V, Almazán-Sánchez PT, Linares-Hernández I, Santoyo-Tepole F, Vázquez-Mejía G (2019) Synthesis of TiO2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis. J Photochem Photobiol A Chem 380:111834. https://doi.org/10.1016/j.jphotochem.2019.04.045

    Article  CAS  Google Scholar 

  71. Mohan Reddy K, Devaraju J (2019) Kinetics of Photo Fenton Process and Ag-TiO2 Photocatalyst under UV-light”. Mater. Today Proc. 17:235–238. https://doi.org/10.1016/j.matpr.2019.06.424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiderman Machuca-Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra, D., Soto, J., Villamizar, S. et al. Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process. Top Catal 63, 1336–1349 (2020). https://doi.org/10.1007/s11244-020-01284-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01284-1

Keywords

Navigation