Skip to main content
Log in

Maximum wave height hindcasting using ensemble linear-nonlinear models

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A comparative study between classic linear and intelligent nonlinear time series approaches for short-term maximum wave height forecasting is presented in this study. The applied models to accomplish a use case for onshore measurements from the Mediterranean Sea include ordinary linear regression (LR), autoregressive integrated moving average (ARIMA), artificial neural networks (ANN), and genetic programming (GP). The study also introduces a new evolutionary ensemble model called ensemble GP, which integrates effective models’ forecasts through an evolutionary procedure. The results from standalone models showed that both linear and nonlinear models provide the same accuracy for short-term maximum wave height hindcasting on a seasonal scale. The proposed ensemble model can enhance the forecasting accuracy of standalone models markedly. The new model can forecast maximum wave heights with the root mean squared errors less than 5 cm and Nash-Sutcliff efficiency more than 0.97. It is explicit and secures parsimony conditions, thus it is proposed to be used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal JD, Deo MC (2002) On-line wave prediction. Mar Struct 15(1):57–74. https://doi.org/10.1016/s0951-8339(01)00014-4

    Article  Google Scholar 

  • Akpınar A, Özger M, Kömürcü Mİ (2014) Prediction of wave parameters by using fuzzy inference system and the parametric models along the south coasts of the Black Sea. J Mar Sci Technol 19(1):1–14. https://doi.org/10.1007/s00773-013-0226-1

    Article  Google Scholar 

  • Aydoğan B, Ayat B, Yüksel Y (2013) Black Sea wave energy atlas from 13 years hindcasted wave data. Renew Energy 57:436–447. https://doi.org/10.1016/j.renene.2013.01.047

    Article  Google Scholar 

  • Balas CE, Koç ML, Tür R (2010) Artificial neural networks based on principal component analysis, fuzzy systems and fuzzy neural networks for preliminary design of rubble mound breakwaters. Appl Ocean Res 32:425–433. https://doi.org/10.1016/j.apor.2010.09.005

    Article  Google Scholar 

  • Buyukyildiz M, Tezel G (2017) Utilization of PSO algorithm in estimation of water level change of Lake Beysehir. Theor Appl Climatol 128(1–2):181–191

    Article  Google Scholar 

  • Danandeh Mehr A (2018) An improved gene expression programming model for streamflow forecasting in intermittent streams. J Hydrol 563:669–678

    Article  Google Scholar 

  • Danandeh Mehr A, Nourani V, Kahya E, Hrnjica B, Sattar AM, Yaseen ZM (2018) Genetic programming in water resources engineering: a state-of-the-art review. J Hydrol 566:643–667

    Article  Google Scholar 

  • Deo MC, Chaudhari G (1998) Tide prediction using neural networks. Comp Aided Civil Infrastruct Eng 13(2):113–120. https://doi.org/10.1111/0885-9507.00091

    Article  Google Scholar 

  • Deo MC, Naidu CS (1998) Real time wave forecasting using neural networks. Ocean Eng 16:191–203. https://doi.org/10.1016/s0029-8018(97)10025-7

    Article  Google Scholar 

  • Dixit P, Londhe S (2016) Prediction of extreme wave heights using neuro wavelet technique. Appl Ocean Res 58:241–252. https://doi.org/10.1016/j.apor.2016.04.011

    Article  Google Scholar 

  • Dixit P, Londhe S, Dandawate Y (2015) Removing prediction lag in wave height forecasting using neuro-wavelet modeling technique. Ocean Eng 93:74–83. https://doi.org/10.1016/j.oceaneng.2014.10.009

    Article  Google Scholar 

  • Duan WY, Huang LM, Han Y, Huang DT (2016) A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting. J Zhejiang Univ-Sci A 17(2):115–129

    Article  Google Scholar 

  • Elliott G, Rothenberg TJ, Stock JH (1996) Efficient tests for an autoregressive unit root. Econometrica 64:813–836

    Article  Google Scholar 

  • Formentin SM, Zanuttigh B (2019) A genetic programming based formula for wave overtopping by crown walls and bullnoses. Coast Eng 152:103529

    Article  Google Scholar 

  • Ghorbani MA, Makarynskyy O, Shiri J, Makarynska D (2010) Genetic programming for sea level predictions in an island environment. Int J Ocean Climate Syst 1(1):27–35

    Article  Google Scholar 

  • Hadadpour S, Etemad-Shahidi A, Kamranzad B (2014) Wave energy forecasting using artificial neural networks in the Caspian Sea. In Proc Instit Civil Eng-Marit Eng 167(1):42–52. https://doi.org/10.1680/maen.13.00004

    Article  Google Scholar 

  • Hrnjica B, Danandeh Mehr A (2019) Optimized genetic programming applications: emerging research and opportunities. IGI global, PA

    Book  Google Scholar 

  • Kambekar AR, Deo MC (2012) Wave prediction using genetic programming and model trees. J Coast Res 28(1):43–50

    Article  Google Scholar 

  • Kamranzad B, Etemad-Shahidi A, Kazeminezad MH (2011) Wave height forecasting in Dayyer, the Persian Gulf. Ocean Eng 38(1):248–255. https://doi.org/10.1016/j.oceaneng.2010.10.004

    Article  Google Scholar 

  • Karimi B, Safari MJS, Danandeh Mehr A, Mohammadi MA (2019) Monthly rainfall prediction using ARIMA and gene expression programming: a case study in Urmia, Iran. Online J Eng Sci Technol 2(3):8–14

    Google Scholar 

  • Kazeminezhad MH, Etemad-Shahidi A, Mousavi SJ (2005) Application of fuzzy inference system in the prediction of wave parameters. Ocean Eng 32(14–15):1709–1725. https://doi.org/10.1016/j.oceaneng.2005.02.001

    Article  Google Scholar 

  • Koç ML, Balas CE (2012) Genetic algorithms based logic-driven fuzzy neural networks for stability assessment of rubble-mound breakwaters. Appl Ocean Res 37:211–219. https://doi.org/10.1016/j.apor.2012.04.005

    Article  Google Scholar 

  • Khozani ZS, Safari MJS, Mehr AD, Mohtar WHMW (2020) An ensemble genetic programming approach to develop incipient sediment motion models in rectangular channels. J Hydrol 124753

  • Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J Econ 54:159–178

    Article  Google Scholar 

  • Law YZ, Santo H, Lim KY, Chan ES (2020) Deterministic wave prediction for unidirectional sea-states in real-time using artificial neural network. Ocean Eng 195:106722

    Article  Google Scholar 

  • Lee, J. S., & Suh, K. D. (2020). Development of stability formulas for rock armor and tetrapods using multigene genetic programming. J Waterway Port Coastal Ocean Eng, 146(1), 04019027

  • Londhe SN (2008) Soft computing approach for real-time estimation of missing wave heights. Ocean Eng 35:1080–1089. https://doi.org/10.1016/j.oceaneng.2008.05.003

    Article  Google Scholar 

  • Londhe SN, Panchang V (2007) Correlation of wave data from buoy networks. Estuar Coast Shelf Sci 74:481–492. https://doi.org/10.1016/j.ecss.2007.05.003

    Article  Google Scholar 

  • Mahjoobi J, Etemad-Shahidi A, Kazeminezad MH (2008) Hindcasting of wave parameters using different soft computing methods. Appl Ocean Res 30(1):28–36. https://doi.org/10.1016/j.apor.2008.03.002

    Article  Google Scholar 

  • Makarynskyy O, Pires-Silva AA, Makarynska D, Ventura-Soares C (2005) Artificial neural networks in wave predictions at the west coast of Portugal. Comput Geosci 31(4):415–424. https://doi.org/10.1016/j.cageo.2004.10.005

    Article  Google Scholar 

  • Mandal S, Prabaharan N (2006) Ocean wave forecasting using recurrent neural networks. Ocean Eng 33(10):1401–1410. https://doi.org/10.1016/j.oceaneng.2005.08.007

    Article  Google Scholar 

  • Nourani V, Behfar N, Uzelaltinbulat S, Sadikoglu F (2020) Spatiotemporal precipitation modeling by artificial intelligence-based ensemble approach. Environ Earth Sci 79(1):6

    Article  Google Scholar 

  • Özger M (2011) Prediciton of ocean wave energy from meteorological variables by fuzzy logic modeling. Expert Syst Appl 38:6269–6274. https://doi.org/10.1016/j.eswa.2010.11.090

    Article  Google Scholar 

  • Power HE, Gharabaghi B, Bonakdari H, Robertson B, Atkinson AL, Baldock TE (2019) Prediction of wave runup on beaches using gene-expression programming and empirical relationships. Coast Eng 144:47–61

    Article  Google Scholar 

  • Rahmani-Rezaeieh A, Mohammadi M, Mehr AD (2019) Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model. Theor Appl Climatol 139(1–2):549–564

    Google Scholar 

  • Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J Hydrol 393(3–4):245–256

    Article  Google Scholar 

  • Tsai CC, Wei CC, Hou TH, Hsu TW (2018) Artificial neural network for forecasting wave heights along a ship’s route during hurricanes. J Waterw Port Coast Ocean Eng 144(2):04017042

    Article  Google Scholar 

  • Tsai CP, Lin C, Shen JN (2002) Neural network for wave forecasting among multi-stations. Ocean Eng 29(13):1683–1695

    Article  Google Scholar 

  • Tehrany MS, Jones S, Shabani F, Martínez-Álvarez F, Bui DT (2019) A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theor Appl Climatol 137(1–2):637–653

    Article  Google Scholar 

  • Tür R, Balas CE (2010) Neuro-fuzzy approximation for prediction of significant wave heights: the case of Filyos region. J Fac Eng Archit Gazi Univ 25(3):505–510

    Google Scholar 

  • Ustoorikar K, Deo MC (2008) Filling up gaps in wave data with genetic programming. Mar Struct 21(2–3):177–195

    Article  Google Scholar 

  • Vouterakos PA, Moustris KP, Bartzokas A, Ziomas IC, Nastos PT, Paliatsos AG (2012) Forecasting the discomfort levels within the greater Athens area, Greece using artificial neural networks and multiple criteria analysis. Theor Appl Climatol 110:329–343. https://doi.org/10.1007/s00704-012-0626-x

    Article  Google Scholar 

  • Zamani A, Solomatine D, Azimian A, Heemink A (2008) Learning from data for wind–wave forecasting. Ocean Eng 35(10):953–962

    Article  Google Scholar 

  • Zanaganeh M, Mousavi SJ, Shahidi AFE (2009) A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters. Eng Appl Artif Intell 22(8):1194–1202

    Article  Google Scholar 

  • Zubier KM (2020) Using an artificial neural network for wave height forecasting in the Red Sea. Indian J Geo Marine Sci 49(02):184–191

    Google Scholar 

Download references

Acknowledgments

The data used in this study was provided by the Turkish State Meteorology Service (MGM). The author appreciates the fruitful comments from three anonymous reviewers that caused a significant improvement in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıfat Tür.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tür, R. Maximum wave height hindcasting using ensemble linear-nonlinear models. Theor Appl Climatol 141, 1151–1163 (2020). https://doi.org/10.1007/s00704-020-03272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03272-7

Keywords

Navigation