Skip to main content
Log in

Modeling of Convective Vapor-Air Flows Near Onboard Suction from Open-Surface Reservoirs

  • ECOLOGY
  • Published:
Refractories and Industrial Ceramics Aims and scope

The results of modeling the processes of capturing harmful emissions from galvanic baths or other tanks with an open surface are presented. An approach based on a numerical determination of the concentration of contaminated substances in the working areas of the room is proposed to evaluate the effectiveness of airborne suction. The fields of air velocity and concentration of harmful vapors in the working area are calculated. The dependence of the flow velocity around the surface of the technological solution on the distance between the surface of the solution and the lower edge of the suction is determined. It is shown that increasing the efficiency of airborne suction can be achieved by mechanical shielding — installation of impervious thin visors on the sides of the bath. The height of the mechanical screen should be about 0.5 of the width of the tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. V. Vekteris, I. Tetsman, and V. Mokshin, “Investigation of the efficiency of the lateral exhaust hood enhanced by aeroacoustic air flow”, Process Saf. Environ. Prot., 109, 224 – 232 (2017).

    Article  CAS  Google Scholar 

  2. S. Liang, J. Chen, B. Yang, et al., “Research on ventilation antivirus technology in a washing board room based on numerical simulation”, editors S. Long and B. Dhillon, In: Man – Machine – Environment System Engineering. MMESE 2017. Lecture Notes in Electrical Engineering, 456, 487 – 494 (2018). DOI: https://doi.org/10.1007/978-981-10-6232-25 6.

  3. E. Gonzalez, F. Marzal, A. Minana, et al., “Influence of exhaust hood geometry on the capture efficiency of lateral exhaust and push-pull ventilation systems in surface treatment tanks”, Environ. Prog., 27(3), 405 – 411 (2008).

    Article  CAS  Google Scholar 

  4. I. Kulmala, P. Hynynen, I. Welling, and A. Saamanen, “Local ventilation solution for large, warm emission sources”, Ann. Occup. Hyg., 51(3), 35 – 43 (2007).

    CAS  Google Scholar 

  5. I. N. Logachev, K. I. Logachev, and O. A. Averkova, Local Exhaust Ventilation: Aerodynamic Processes and Calculations of Dust Emissions, CRC Press, Boca Raton (2015) 576 p.

    Book  Google Scholar 

  6. F. Cascetta and L. Bellia, “Velocity fields in proximity of local exhaust hood openings: an intercomparison between current recommended formulas and experimental studies”, Build. Environ., 31(5), 451 – 459 (1996). DOI: https://doi.org/10.1016/0360-1323(96) 00010-8.

  7. R. H. Reif and R. S. Houck, “Poor design of local exhaust hood leads to radioactive release in the work area”, Health Phys., 78(2), 222 – 225 (2000). DOI: https://doi.org/10.1097/00004032-200002000-00011.

    Article  CAS  Google Scholar 

  8. F. Cascetta and F. M. Rosano, “Assessment of velocity fields in the vicinity of rectangular exhaust hood openings”, Build. Environ., 36, 1137 – 1141 (2001). DOI: https://doi.org/10.1016/S0360-1323(00) 00087-1.

  9. L. M. Conroy, P.M. J. Trevelyan, and D. B. Ingham, “An analytical, numerical, and experimental comparison of the fluid velocity in the vicinity of an open tank with one and two lateral exhaust slot hoods and a uniform crossdraft”, Ann. Occup. Hyg., 44(6), 407 – 419 (2000). DOI: https://doi.org/10.1016/S0003-4878(99) 00111-8.

  10. V. M. Elterman, Ventilation in Chemical Production [in Russian], Khimiya, Moscow (1980) 288 p.

    Google Scholar 

  11. A. Akinchev, General Ventilation of Workshops with Heat Generation [in Russian], Strojizdat, Moscow (1984) 144 p.

    Google Scholar 

  12. E. E. Novgorodsky and A. A. Trubnikov, “Analysis of approaches to assessing the effectiveness of hazard capture and predicting air pollution of working areas” [in Russian], Inzhenernyj Vestnik Dona, No. 3, 644 – 647 (2012).

  13. I. I. Elinsky, Ventilation and Heating of Galvanic Shops of Machine-Building Enterprises [in Russian], Mashinostroenie, Moscow (1989) 152 p.

    Google Scholar 

  14. V. G. Shaptala, G. L. Okuneva, and V. V. Shaptala, “Numerical modeling of air exchange in workshops with dust and heat emissions” [in Russian], Izvestiya VUZov. Stroitel’stvo, No. 10, 102 – 106 (2000).

  15. I. N. Logachev and V. V. Shaptala, “Optimization of local suction in workshops with heat generation” [in Russian], Coll. Mater. Int. Sci.-Tech. Conf. “Problems of the protection of production and the environment”, Publishing House VolgGASA, Volgograd (1997) p. 123.

  16. V. M. Berkovsky and M. K. Polevikov, A Computational Experiment in Convection [in Russian], Universitetskoye, Minsk (1988) 167 p.

    Google Scholar 

  17. H. K. Versteeg and M. Malalasekera, An Introduction to CFD Finite Volume Method, 2nd ed., Pearson Education Ltd. (2007) 267 p.

  18. K. Frana, J. S. Zhang, and M. Muller, “A numerical simulation of the indoor air flow”, World Academy of Science, Engineering and Technology. International Journal of Physical and Mathematical Sciences, 7(6), 938 – 943 (2013).

    Google Scholar 

  19. O. A. Averkova, D. N. Krutikova, I. N. Logachev, et al., “Mathematical modeling of flow near shielded airborne suction” [in Russian], Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V. G. Shukhova (Bulletin of the Belgorod State Technological University named after V. G. Shukhov), No. 9, 96 – 102 (2016).

  20. O. A. Averkova, D. N. Krutikova, I. N. Logachev, et al., “Calculation of flow in the spectrum of action of local airborne ventilation suction” [in Russian], Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V. G. Shukhova (Bulletin of the Belgorod State Technological University named after V. G. Shukhov), No. 10, 109 – 113 (2016).

  21. O. A. Averkova, D. N. Krutikova, I. N. Logachev, et al., “On the issue of modeling air flow near airborne suction from a galvanic bath” [in Russian], Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V. G. Shukhova (Bulletin of the Belgorod State Technological University named after V. G. Shukhov), No. 8, 75 – 81 (2017).

  22. K. I. Logachev, A.M. Ziganshin, O. A. Averkova, and A. K. Logachev, “Asurvey of separated airflow patterns at inlet of circular exhaust hoods”, Energy Build., 173, 58 – 70 (2018).

    Article  Google Scholar 

  23. K. I. Logachev, A.M. Ziganshin, O. A. Averkova, “On the resistance of a round exhaust hood, shaped by outlines of the vortex zones occurring at its inlet” [in Russian], Build. Environ., 151, 338 – 347 (2019).

    Article  Google Scholar 

Download references

The study was carried out with a grant from the Russian Science Foundation (project No. 18-79-10025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Logachev.

Additional information

Translated from Novye Ogneupory, No. 12, pp. 56 – 61, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaptala, V.V., Logachev, K.I., Averkova, O.A. et al. Modeling of Convective Vapor-Air Flows Near Onboard Suction from Open-Surface Reservoirs. Refract Ind Ceram 60, 636–641 (2020). https://doi.org/10.1007/s11148-020-00420-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00420-4

Keywords

Navigation