Skip to main content
Log in

Changes in the Mechanical Properties of High-Chromium Economically Alloyed Pipe Steel Depending on Tempering Conditions after Intercritical Quenching

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This work studies the effect of single and double tempering at various temperatures on the mechanical properties of a new corrosion-resistant high-chromium (13% Cr) economically alloyed pipe steel quenched from an intercritical temperature interval. The existence of a maximum of impact toughness and minimum of yield strength at equal temperatures on the dependences of these quantities on the tempering temperature is shown. The temperature of the extrema is supposedly determined by the position of the “nose” of the C‑shaped temperature diagram of the precipitation of (Cr,Fe)23C6 carbide particles from martensite during tempering. It is shown that the position of the extrema does not depend on the duration of the first general tempering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. B. Pikering, Physical Metallurgyl and Design of Steels (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  2. F. F. Khimushin, Stainless Steels (Metallurgizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  3. D. A. Mirzaev, A. S. Bezik, S. A. Sozykin, and A. N. Makovetskii, “Effect of intercritical quenching on the mechanical properties of the 13Kh11N2B2MF steel,” Vestnik MGTU im. G. I. Nosova, No. 4, 45–49 (2018).

    Google Scholar 

  4. L. N. Belyakov and V. I. Kozlovskii, “Retained austenite in martensitic stainless steels,” Metalloved. Term. Obrab. Met., No. 2, 52–54 (1965).

  5. K. A. Laev, “The effect of alloying and heat treatment on the structure and properties of corrosion-resistant high-chromium steels of martensitic and supermartensitic classes for the manufacture of oil and gas pipes,” Abstract Cand. Diss. (YuURGU, Chelyabinsk, 2016) [in Russian].

  6. I. Yu. Pyshmintsev, S. M. Bityukov, K. A. Laev, A. N. Boryakova, and D. A. Manannikov, “Study of steels of the “super-chromium” class intended for the manufacture of corrosion-resistant high-strength oil pipes,” Chern. Metall., No. 2, 51–56 (2010).

  7. M. A. Smirnov, I. Yu. Pyshmintsev, K. A. Laev, and A. M. Akhmed’yanov, “The effect of high-temperature thermomechanical processing on the properties of high-chromium steel,” Vestn. YuUrGU. Ser. “Metallurgiya”, No. 39, 85–88 (2012).

  8. D. A. Mirzaev, S. A. Sozykin, A. N. Makovetskii, A. O. Krasnotalov, and L. I. Yusupova, “Dilatometric study of the formation of martensite and stabilization effects of austenite in 15Kh13N2 high-chromium steel,” Phys. Met. Metallogr. 120, 770–774 (2019).

    Article  Google Scholar 

  9. T. Nishizawa and A. Chiba, “Phenomenological consideration on interphase equlilibrium in diffusion couple,” J. Jpn. Inst. Met. 34, 629–637 (1970).

    Article  CAS  Google Scholar 

  10. G. N. Dubinin, “On the mechanism of diffusion layer formation,” Zashch. Pokryt. Met., No. 10, 12–17 (1976).

  11. L. E. Popova and A. A. Popov, Diagrams of Transformation of Austenite in Steels and Beta-Solutions in Titanium Alloys, Handbook of Heat Treatment Specialist, 3rd ed., (Metallurgiya, Moscow, 1991) [in Russian].

    Google Scholar 

  12. K. A. Lanskaya, High-Chromium Heat-Resistant Steels (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  13. M. L. Bernshtein, L. M. Kaputkina, and S. D. Prokoshkin, Tempering of Steel (MISIS, Moscow, 1997) [in Russian].

    Google Scholar 

  14. J. Beech and D. H. Warrington, “M7C3 to M23C6 transformation in chromium containing alloys,” J. Iron Steel Inst. 204, 460–468 (1966).

    Google Scholar 

  15. A. P. Gulyaev, “Carbide transformations in alloy steels,” Met. Sci. Heat Treat. 1, 53–60 (1959).

    Article  Google Scholar 

  16. J. W. Martin and R. D. Doherty, Stability of Microstructure in Metallic Systems (Cambridge University, Cambridge, 1976, 1997; Atomizdat, Moscow, 1978).

  17. I. I. Kositsyna, V. V. Sagaradze, Yu. N. Zuev, and A. Peruha, “Decrease in the ductile–brittle transition temperature of a high-chromium reactor steel MANET-II,” Phys. Met. Metallogr. 86, 205–210 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sozykin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makovetskii, A.N., Mirzaev, D.A., Yusupova, L.I. et al. Changes in the Mechanical Properties of High-Chromium Economically Alloyed Pipe Steel Depending on Tempering Conditions after Intercritical Quenching. Phys. Metals Metallogr. 121, 398–403 (2020). https://doi.org/10.1134/S0031918X20040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20040080

Keywords:

Navigation