Skip to main content
Log in

Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure and phase composition of biocompatible titanium alloys of composition (wt %) Ti–10Zr–1.2Nb–1.5Al, Ti–6Al–4V (ELI), Ti–15Mo, and Ti–36.1Nb–3.8Zr–2.4Ta–1.9Sn have been studied in a hot-deformed state using scanning electron microscopy and X-ray diffraction analysis. The analysis of mechanical tensile properties has been performed depending on the structure and the aluminum strength equivalent of the alloys. The elasticity moduli of the alloys have been determined using tensile tests, dynamic mechanical analysis, and microindentation; the comparability of values within the error of 3–7% has been established. The nonmonotonic character of the change of the elasticity modulus upon heating to 550°C is explained in terms of the occurrence of processes of stress relaxation and recovery in the Ti–10Zr–1.2Nb–1.5Al, and Ti–6Al–4V ELI alloys and based on the precipitation of the high-modulus ω phase in the Ti–15Mo alloy. For the Ti–36.1Nb–3.8Zr–2.4Ta–1.9Sn alloy, the realization of the elinvar effect has been demonstrated. A correlation of the rate of change in the elasticity modulus with the heating temperature and the ratio of α and β phases in the structure of the alloys has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng., A 243, 231–236 (1998).

    Article  Google Scholar 

  2. M. Yu. Kollerov, V. S. Spektor, S. V. Skvortsova, A. M. Mamonov, D. E. Gusev, and G. V. Gurtovaya, “Problems and prospectives of application of titanium alloys in medicine,” Titan, No. 2, 42–53 (2015).

    Google Scholar 

  3. D. Banerjee and J. C. Williams, “Perspectives on titanium science and technology,” Acta Mater. 61, 844–879 (2013).

    Article  CAS  Google Scholar 

  4. K. Wang, “The use of titanium for medical applications in the USA,” Mater. Sci. Eng., A 213, 134–137 (1996).

    Article  Google Scholar 

  5. A. G. Illarionov, N. V. Shchetnikov, S. M. Illarionova and A. A. Popov, “Effect of heating temperature on the formation of structure and phase composition of a biocompatible alloy Ti–6AL–4V–ELI subjected to equal-channel angular pressing,” Phys. Met. Metallogr. 118, 272–278 (2017).

    Article  CAS  Google Scholar 

  6. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wena, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).

    Article  CAS  Google Scholar 

  7. V. V. Tetyukhin, N. Yu. Tarenkova, I. Yu. Puzakov, and M. A. Kornilova, RF Patent No. 2479657 (2013).

  8. M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1, 30–42 (2008).

    Article  Google Scholar 

  9. W. F. Ho, “A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys,” J. Alloys Compd. 464, 580–583 (2008).

    Article  CAS  Google Scholar 

  10. M. Geeta, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopedic implants – A review,” Prog. Mater. Sci. 54, 397–425 (2009).

    Article  Google Scholar 

  11. A. G. Illarionov, S. V. Grib, S. M. Illarionova and A. A. Popov, “Relationship between structure, phase composition, and physicomechanical properties of quenched Ti–Nb alloys,” Phys. Met. Metallogr. 120, 150–156 (2019).

    Article  CAS  Google Scholar 

  12. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).

    Article  Google Scholar 

  13. S. Guo, Q. Meng, X. Zhao, Q. Wet, H. Xu, “Design and fabrication of metastable β-type titanium alloy with ultralow elastic modulus and high strength,” Sci. Rep. 5, 14688 (2015).

    Article  CAS  Google Scholar 

  14. V. A. Sheremetyev, S. D. Prokoshkin, V. Brailovski, S. M. Dubinskiy, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, “Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys,” Phys. Met. Metallogr. 116, 413–422 (2015).

    Article  Google Scholar 

  15. K. Wouters, P. Gijsenbergh, and R. Puers, “Comparison of methods for the mechanical characterization of polymers for MEMS applications,” J. Micromech. Microeng. 21, 115027 (2011).

    Article  Google Scholar 

  16. N. C. Sheth, Y. V. Rathod, P. R. Shenoi, D. D. Shori, R. T. Khode, and A. P. Khadse, “Evaluation of new technique of sterilization using biological indicator,” J. Conservative Dent. 20, 346–350 (2017).

    Article  CAS  Google Scholar 

  17. U. Tsvikker, Titanium and Its Alloys (Mir, Moscow, 1979) [in Russian].

  18. D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017).

    Article  CAS  Google Scholar 

  19. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS–MATI, Moscow, 2009) [in Russian]

    Google Scholar 

  20. O. P. Shaboldo, Ya. M. Vitorskii, V. V. Sagaradze, N. L. Pecherkina and M. A. Skotnikova, “Formation of the structure and properties of β-type titanium alloy upon thermomechanical treatment,” Phys. Met. Metallogr. 118, 75–80 (2017).

    Article  CAS  Google Scholar 

  21. T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Noraka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, “Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism,” Science 18, 464–467 (2003).

    Article  Google Scholar 

  22. A. G. Illarionov, Yu. N. Loginov, S. I. Stepanov, S. M. Illarionova, and P. S. Radaev, “Variation of the structure-and-phase condition and physical and mechanical properties of cold-deformed leaded brass under heating,” Metalloved. Term. Obr. Mater., No. 4, 39–45 (2019).

  23. I. Obinata and K. Nishimura, “On the recrystallization of cold-rolled commercially pure Ti,” J. Inst. Met. 84, 97–101 (1955).

    Google Scholar 

  24. P. Zháňal, P. Harcuba, M. Hájek, B. Smola, J. Stráský, J. Šmilauerová, J. Veselý, and M. Janeček, “Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo,” J. Mater. Sci. 53, 837–845 (2018).

    Article  Google Scholar 

  25. D. L. Moffat and U. R. Kattner, “The stable and metastable Ti-Nb phase diagrams,” Metall. Trans. A 19, 2389–2397 (1988).

    Article  Google Scholar 

  26. Y. Wang, J. Gao, H. Wu, S. Yang, X. Ding, D. Wang, and J. Gao, “Strain glass transition in a multifunctional β-type Ti alloy,” Sci. Rep. 4, 1–5 (2014).

    Google Scholar 

  27. S. L. Demakov, S. I. Stepanov, A. G. Illarionov and M. A. Ryzhkov, “Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy,” Phys. Met. Metallogr. 118, 264–271 (2017).

    Article  CAS  Google Scholar 

  28. S. G. Glazunov and V. N. Moiseev, StructuralTitanium Allots (Metallurgiya, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 18-13-00220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Stepanov.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarionov, A.G., Nezhdanov, A.G., Stepanov, S.I. et al. Structure, Phase Composition, and Mechanical Properties of Biocompatible Titanium Alloys of Different Types. Phys. Metals Metallogr. 121, 367–373 (2020). https://doi.org/10.1134/S0031918X20040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20040055

Keywords:

Navigation