Skip to main content
Log in

Unlocking the Genomic Taxonomy of the Prochlorococcus Collective

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Prochlorococcus is the most abundant photosynthetic prokaryote on our planet. The extensive ecological literature on the Prochlorococcus collective (PC) is based on the assumption that it comprises one single genus comprising the species Prochlorococcus marinus, containing itself a collective of ecotypes. Ecologists adopt the distributed genome hypothesis of an open pan-genome to explain the observed genomic diversity and evolution patterns of the ecotypes within PC. Novel genomic data for the PC prompted us to revisit this group, applying the current methods used in genomic taxonomy. As a result, we were able to distinguish the five genera: Prochlorococcus, Eurycolium, Prolificoccus, Thaumococcus, and Riococcus. The novel genera have distinct genomic and ecological attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chisholm SW, Frankel SL, Goericke R et al (1992) Prochiorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol:297–300

  2. Chisholm SW (2017) Prochlorococcus. Curr Biol 27:R447–R448. https://doi.org/10.1016/j.cub.2017.02.043

    Article  CAS  PubMed  Google Scholar 

  3. Braakman R, Follows MJ, Chisholm SW (2017) Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci 114:E3091–E3100. https://doi.org/10.1073/pnas.1619573114

    Article  CAS  PubMed  Google Scholar 

  4. Ting CS, Ramsey ME, Wang YL, Frost AM, Jun E, Durham T (2009) Minimal genomes, maximal productivity: comparative genomics of the photosystem and light-harvesting complexes in the marine cyanobacterium, Prochlorococcus. Photosynth Res 101:1–19

    CAS  PubMed  Google Scholar 

  5. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299. https://doi.org/10.1128/MMBR.00035-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ralf G, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinylchlorophyll a and b in a marine procaryote. Limnol Oceanogr 37:425–433

    Google Scholar 

  7. Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Ann Rev Mar Sci 2:305–331

    PubMed  Google Scholar 

  8. Mühling M (2012) On the culture-independent assessment of the diversity and distribution of Prochlorococcus. Environ Microbiol 14:567–579

    PubMed  Google Scholar 

  9. Coleman ML, Sullivan MB, Martiny AC et al (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science (80- ) 311:1768–1770. https://doi.org/10.1126/science.1122050

    Article  CAS  Google Scholar 

  10. Coleman ML, Chisholm SW (2007). Code and context: Prochlorococcus as a model for cross-scale biology. 15:15–407. https://doi.org/10.1016/j.tim.2007.07.001

    Article  CAS  Google Scholar 

  11. Kashtan N, Roggensack SE, Rodrigue S et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science (80- ) 344:416–420. https://doi.org/10.1126/science.1248575

    Article  CAS  Google Scholar 

  12. Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, Roache-Johnson KH, Ding H, Giovannoni SJ, Rocap G, Moore LR, Chisholm SW (2014) Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data 1:140034

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW (2017) Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J 11:1997–2011. https://doi.org/10.1038/ismej.2017.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, Braakman R, Collins SB, Kelly L, Berta-Thompson J, Coe A, Bergauer K, Bouman HA, Browning TJ, de Corte D, Hassler C, Hulata Y, Jacquot JE, Maas EW, Reinthaler T, Sintes E, Yokokawa T, Lindell D, Stepanauskas R, Chisholm SW (2018) Data descriptor: single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data 5:1–11. https://doi.org/10.1038/sdata.2018.154

    Article  CAS  Google Scholar 

  15. Chisholm SW (2012) The life and times of the ocean’s smallest photosynthetic cell. In: Kolter R, Maloy S (eds) Microbes and evolution: the world that Darwin never saw. ASM Press, pp 165–172

  16. Thompson CC, Silva GGZ, Vieira NM, Edwards R, Vicente ACP, Thompson FL (2013) Genomic taxonomy of the genus Prochlorococcus. Microb Ecol 66:752–762. https://doi.org/10.1007/s00248-013-0270-8

    Article  PubMed  Google Scholar 

  17. Coutinho F, Tschoeke DA, Thompson F, Thompson C (2016) Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ 4:e1522. https://doi.org/10.7717/peerj.1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC (2017) Ecogenomics and taxonomy of Cyanobacteria phylum. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.02132

  19. Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    CAS  PubMed  Google Scholar 

  20. Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25:107–110

    CAS  PubMed  Google Scholar 

  21. Rosselló-Móra R, Whitman WB (2019) Dialogue on the nomenclature and classification of prokaryotes. Syst Appl Microbiol 42:5–14. https://doi.org/10.1016/j.syapm.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  22. De Vos P, Thompson F, Thompson C, Swings J (2017) A flavor of prokaryotic taxonomy: systematics revisited. Microbial resources: from functional existence in nature to applications. Elsevier Inc., pp 29–44

  23. Sun Z, Blanchard JL (2014) Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes. PLoS One 9:e88837

    PubMed  PubMed Central  Google Scholar 

  24. Johnson ZI, Zinser ER, Coe A et al (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science (80- ) 311:1737–1740

    CAS  Google Scholar 

  25. Garczarek L, Dufresne A, Rousvoal S, West NJ, Mazard S, Marie D, Claustre Hé, Raimbault P, Post AF, Scanlan DJ, Partensky Féé (2007) High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiol Ecol 60:189–206. https://doi.org/10.1111/j.1574-6941.2007.00297.x

    Article  CAS  PubMed  Google Scholar 

  26. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC (2010) Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci 107:16184–16189

    CAS  PubMed  Google Scholar 

  27. Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, Zinser ER, Johnson ZI (2016) Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J 10:1555–1567

    PubMed  PubMed Central  Google Scholar 

  28. West NJ, Lebaron P, Strutton PG, Suzuki MT (2011) A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME J 5:933–944

    CAS  PubMed  Google Scholar 

  29. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2012) Novel lineages of prochlorococcus and synechococcus in the global oceans. ISME J 6:285–297. https://doi.org/10.1038/ismej.2011.106

    Article  CAS  PubMed  Google Scholar 

  30. Kent AG, Dupont CL, Yooseph S, Martiny AC (2016) Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME J 10:1856–1865. https://doi.org/10.1038/ismej.2015.265

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moore LR, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol Oceanogr 44:628–638

    Google Scholar 

  32. Biller SJ, Berube PM, Lindell D, Chisholm SW (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27. https://doi.org/10.1038/nrmicro3378

    Article  CAS  PubMed  Google Scholar 

  33. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    CAS  PubMed  Google Scholar 

  34. Chandler JW, Lin Y, Gainer PJ, Post AF, Johnson ZI, Zinser ER (2016) Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean’s surface mixed layer. Environ Microbiol Rep 8:272–284

    PubMed  Google Scholar 

  35. Binder BJ, Chisholm SW, Olson RJ, Frankel SL, Worden AZ (1996) Dynamics of picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific. Deep Sea Res Part II Top Stud Oceanogr 43:907–931

    Google Scholar 

  36. Ferris MJ, Palenik B (1998) Niche adaptation in ocean cyanobacteria. Nature 396:226–228

    CAS  Google Scholar 

  37. García-Fernández JM, Hess WR, Houmard J, Partensky F (1998) Expression of the psbA gene in the marine oxyphotobacteria Prochlorococcus spp. Arch Biochem Biophys 359:17–23

    PubMed  Google Scholar 

  38. Fuhrman JA, McCallum K, Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martiny AC, Coleman ML, Chisholm SW (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc Natl Acad Sci 103:12552–12557

    CAS  PubMed  Google Scholar 

  40. Martiny AC, Huang Y, Li W (2009) Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ Microbiol 11:1340–1347

    CAS  PubMed  Google Scholar 

  41. Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996

    CAS  Google Scholar 

  42. Sullivan MB, Waterbury JB, Chisholm SW (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424:1047–1051

    CAS  PubMed  Google Scholar 

  43. Sher D, Thompson JW, Kashtan N, Croal L, Chisholm SW (2011) Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J 5:1125–1132

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Biller SJ, Coe A, Chisholm SW (2016) Torn apart and reunited: impact of a heterotroph on the transcriptome of Prochlorococcus. ISME J 10:2831–2843

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, Hogle SL, Coe A, Bergauer K, Bouman HA, Browning TJ, de Corte D, Hassler C, Hulston D, Jacquot JE, Maas EW, Reinthaler T, Sintes E, Yokokawa T, Chisholm SW (2018) Data descriptor: marine microbial metagenomes sampled across space and time. Sci Data 5:1–7. https://doi.org/10.1038/sdata.2018.176

    Article  CAS  Google Scholar 

  46. Muñoz-marín MC, Gómez-baena G, López-lozano A et al (2020) Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 14:1065–1073. https://doi.org/10.1038/s41396-020-0603-9

    Article  CAS  PubMed  Google Scholar 

  47. Vandamme P, Pot B, Gillis M et al (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Mol Biol Rev 60:407–438

    CAS  Google Scholar 

  48. Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 37:463–464. https://doi.org/10.1099/00207713-37-4-463

    Article  Google Scholar 

  49. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  50. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, Swings J (2005) Defining prokaryotic species Reevaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    CAS  PubMed  Google Scholar 

  51. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:913. https://doi.org/10.1186/1471-2164-14-913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thompson CC, Amaral GR, Campeão M, Edwards RA, Polz MF, Dutilh BE, Ussery DW, Sawabe T, Swings J, Thompson FL (2015) Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 197:359–370

    CAS  PubMed  Google Scholar 

  53. Castelle CJ, Banfield JF (2018) Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172:1181–1197

    CAS  PubMed  Google Scholar 

  54. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. https://doi.org/10.1038/nbt.4229

    Article  CAS  PubMed  Google Scholar 

  55. Hyatt D, Chen G-L, LoCascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11:119

    Google Scholar 

  56. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    PubMed  PubMed Central  Google Scholar 

  59. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. https://doi.org/10.1007/978-1-59745-251-9_3

  60. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 5:e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 33:1635–1638. https://doi.org/10.1093/molbev/msw046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee MD, Ponty Y (2019) GToTree: A user-friendly workflow for phylogenomics. Bioinformatics. 35:4162–4164. https://doi.org/10.1093/bioinformatics/btz188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol. 7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. https://doi.org/10.1093/molbev/mst197

  67. Tange O (2011) GNU parallel: the command-line power tool. ;login USENIX Mag. https://doi.org/10.5281/zenodo.16303

  68. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in bacteria. PLoS Genet 6:e1001107

    PubMed  PubMed Central  Google Scholar 

  70. Hershberg R, Petrov DA (2010) Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet 6:e1001115

    PubMed  PubMed Central  Google Scholar 

  71. Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW (2019) Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife 8:1–28. https://doi.org/10.7554/elife.41043

    Article  CAS  Google Scholar 

  72. Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45

    PubMed  PubMed Central  Google Scholar 

  73. Di Rienzi SC, Sharon I, Wrighton KC et al (2013) The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife 2:e01102

    PubMed  PubMed Central  Google Scholar 

  74. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, Steen JA, Parks DH, Tyson GW, Hugenholtz P (2014) An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol 6:1031–1045

    PubMed  PubMed Central  Google Scholar 

  75. Soo RM (2015) In search of non-photosynthetic Cyanobacteria. Univ Queensl

  76. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    CAS  PubMed  Google Scholar 

  77. Cohan FM (2016) Bacterial speciation: genetic sweeps in bacterial species. Curr Biol 26:R112–R115. https://doi.org/10.1016/j.cub.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  78. Cohan FM, Kopac SM (2017) A theory-based pragmatism for discovering and classifying newly divergent species of bacterial pathogens. Genet Evol Infect Dis:25

  79. Baumann L, Baumann P, Mandel M et al (1972) Taxonomy of aerobic marine. Microbiology 110:402–429

    CAS  Google Scholar 

  80. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160. https://doi.org/10.1016/S0723-2020(88)80030-4

    Article  Google Scholar 

  81. Kurahashi M, Yokota A (2007) Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Syst Appl Microbiol 30:202–206. https://doi.org/10.1016/j.syapm.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  82. GAUTHIER MJ, LAFAY B, CHRISTEN BR et al (1992) Marinobacter hydrocarbonoclasticus gen. nov,, sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576. https://doi.org/10.1373/49.4.644

    Article  CAS  PubMed  Google Scholar 

  83. GONZALEZ JM, MAYER F, MORAN MA et al (2009) Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376. https://doi.org/10.1099/00207713-47-2-369

    Article  Google Scholar 

  84. LANDSCHOOT A VAN, LEY J DE (1983) Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Murimmonas (gen. nov.) and some other Gram-negative bacteria. J Gen Microbiol 129:3057–3074

  85. Gauthier G, Gauthier M, R C (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of Tw. Int J Syst Bacteriol 45:755–761

  86. Shieh WY, Te Lin Y, Jean WD (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54:2307–2312. https://doi.org/10.1099/ijs.0.63107-0

    Article  CAS  PubMed  Google Scholar 

  87. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145. https://doi.org/10.1016/S0723-2020(11)80292-4

    Article  Google Scholar 

  88. Uchino Y, Hirata A, Yokota A, Sugiyama J (2005) Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and A. J Gen Appl Microbiol 44:201–210. https://doi.org/10.2323/jgam.44.201

    Article  Google Scholar 

  89. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182. https://doi.org/10.1016/S0723-2020(85)80051-5

    Article  CAS  Google Scholar 

  90. Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766. https://doi.org/10.1099/ijs.0.63625-0

    Article  CAS  PubMed  Google Scholar 

  91. Waksman SA, Henrici AT (1895) The nomenclature and classification of the actinomycetes. J Am Med Assoc XXIV:452. https://doi.org/10.1001/jama.1895.02430120030007

    Article  Google Scholar 

  92. Macia MC, Ludwig W, Schleifer KH et al (2001) Thalassomonas viridans gen . nov ., sp . nov ., a novel marine γ-proteobacterium. Int J Syst Evol Microbiol 51:1283–1289

    Google Scholar 

  93. Pacini F (1854) Osservazione microscopiche e deduzioni patologiche sul cholera asiatico. Gaz Medicale Ital Toscano Firenze 6:405–4012

    Google Scholar 

  94. Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the E-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482. https://doi.org/10.1099/ijs.0.03042-0

    Article  CAS  PubMed  Google Scholar 

  95. Inagaki F, Takai K, Kobayashi H et al (2003) Sulfurimonas autrotrophica gen. nov., sp. nov., a novel sulfur-oxidizing E-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805. https://doi.org/10.1099/ijs.0.02682-0

    Article  CAS  PubMed  Google Scholar 

  96. Luo H, Moran MA (2014) Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:573–587. https://doi.org/10.1128/MMBR.00020-14

    Article  PubMed  PubMed Central  Google Scholar 

  97. Barka EA, Vatsa P, Sanchez L et al (2016) Taxonomy, physiology, and natural products of Actinobacteria. Am Soc Microbiol 80:1–43. https://doi.org/10.1128/MMBR.00019-15.Address

    Article  Google Scholar 

  98. Clark K, Karsch-Mizrachi I, Lipman DJ et al (2015) GenBank. Nucleic Acids Res 44:D67–D72

    PubMed  PubMed Central  Google Scholar 

  99. Kauff F, Büdel B (2010) Phylogeny of cyanobacteria: an overview. In: Progress in botany 72. Springer, pp 209–224

  100. STANIER RY, SISTROM WR, HANSEN TA et al (1978) Proposal to place the nomenclature of the Cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. Int J Syst Evol Microbiol 28:335–336. https://doi.org/10.1099/00207713-28-2-335

    Article  Google Scholar 

  101. Oren A (2004) A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902. https://doi.org/10.1099/ijs.0.03008-0

    Article  PubMed  Google Scholar 

  102. Oren A, Garrity GM (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek 106:43–56

    PubMed  Google Scholar 

  103. Tindall BJ (1999) Note: Proposals to update and make changes to the Bacteriological Code. Int J Syst Evol Microbiol 49:1309–1312

    Google Scholar 

  104. De Vos P, Trüper HG (2000) Judicial commission of the international committee on systematic bacteriology; IXth international (IUMS) congress of bacteriology and applied microbiology. Int J Syst Evol Microbiol 50:2239–2244

    Google Scholar 

  105. Labeda DP (2000) International committee on systematic bacteriology; IXth international (IUMS) congress of bacteriology and applied microbiology. Int J Syst Evol Microbiol 50:2245–2247

    Google Scholar 

  106. Hoffmann L, Komárek J, Kaštovsky J (2005) System of cyanoprokaryotes (cyanobacteria)--state in 2004. Arch Hydrobiol Suppl Algol Stud 117:95–115

    Google Scholar 

  107. Oren A, Tindall BJ (2005) Nomenclature of the cyanophyta/cyanobacteria/cyanoprokaryotes under the International Code of Nomenclature of Prokaryotes. Arch Hydrobiol Suppl Algol Stud 117:39–52

    Google Scholar 

  108. Oren A, Komárek J, Hoffmann L (2009) Nomenclature of the Cyanophyta/Cyanobacteria/Cyanoprokaryotes--what has happened since IAC Luxembourg? Arch Hydrobiol Suppl Algol Stud 130:17–26

    Google Scholar 

  109. Oren A, Ventura S (2017) The current status of cyanobacterial nomenclature under the “prokaryotic” and the “botanical” code. Antonie Van Leeuwenhoek 110:1257–1269

    CAS  PubMed  Google Scholar 

  110. Parte AC (2014) LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616. https://doi.org/10.1093/nar/gkt1111

    Article  CAS  PubMed  Google Scholar 

  111. Gaget V, Welker M, Rippka R, de Marsac NT (2015) A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov. I. Syst Appl Microbiol 38:141–158

    PubMed  Google Scholar 

  112. Gaget V, Welker M, Rippka R, de Marsac TN (2015) Response to: “Comments on:” A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothri. Syst Appl Microbiol 38:368–370

    PubMed  Google Scholar 

  113. Boone DR, Castenholz RW (2001) The Archaea and the deeply branching and phototrophic bacteria. In: Garrity G, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume one. Springer-Verlag, New York, pp 473–487

    Google Scholar 

  114. Rippka R, Deruelles J, Waterbury JB, et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61, 1

  115. Gugger MF, Hoffmann L (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54:349–357

    CAS  PubMed  Google Scholar 

  116. Hugenholtz P, Skarshewski A, Parks DH (2016) Genome-based microbial taxonomy coming of age. Cold Spring Harb Perspect Biol 8:a018085

    PubMed  PubMed Central  Google Scholar 

  117. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 110:1053–1058. https://doi.org/10.1073/pnas.1217107110

    Article  PubMed  Google Scholar 

  118. Komarek J, Kastovsky J, Mares J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  119. Kozlov AM, Zhang J, Yilmaz P, Glöckner FO, Stamatakis A (2016) Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Res 44:5022–5033

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Choudoir MJ, Campbell AN, Buckley DH (2012) Grappling with Proteus: population level approaches to understanding microbial diversity. Front Microbiol 3:336

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Becraft ED, Wood JM, Rusch DB et al (2015) The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park. Front Microbiol 6:590. https://doi.org/10.3389/fmicb.2015.00590

    Article  PubMed  PubMed Central  Google Scholar 

  122. Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, Pitt FD, Wincker P, Scanlan DJ, Iudicone D, Acinas SG, Garczarek L (2016) Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci 113:E3365–E3374. https://doi.org/10.1073/pnas.1524865113

    Article  CAS  PubMed  Google Scholar 

  123. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, de Marsac NT, Weissenbach J, Wincker P, Wolf YI, Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci 100:10020–10025

    CAS  PubMed  Google Scholar 

  124. Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church GM, Richardson P, Chisholm SW (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:2515–2528. https://doi.org/10.1371/journal.pgen.0030231

    Article  CAS  Google Scholar 

  125. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, Wright MA, Rector T, Steen R, McNulty N, Thompson LR, Chisholm SW (2009) Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS One 4:e5135

    PubMed  PubMed Central  Google Scholar 

  126. García-Fernandez JM, Marsac NT, Diez J (2004) Streamlined regulation and gene loss as adaptive mechanisms in prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68:630–638. https://doi.org/10.1128/MMBR.68.4.630

    Article  PubMed  PubMed Central  Google Scholar 

  127. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P (2020) A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. https://doi.org/10.1038/s41587-020-0501-8

  128. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH (2019) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz848

  129. Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    CAS  Google Scholar 

  130. Giovannoni SJ, Halsey KH, Saw J, Muslin O, Suffridge CP, Sun J, Lee CP, Moore ER, Temperton B, Noell SE (2019) A parasitic arsenic cycle that shuttles energy from phytoplankton to heterotrophic bacterioplankton. MBio 10

  131. Saunders JK, Rocap G (2016) Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. ISME J 10:197–209. https://doi.org/10.1038/ismej.2015.85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq, CAPES and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Thompson.

Electronic supplementary material

Table S1

(CSV 1623 kb)

Table S2

(XLSM 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschoeke, D., Salazar, V.W., Vidal, L. et al. Unlocking the Genomic Taxonomy of the Prochlorococcus Collective. Microb Ecol 80, 546–558 (2020). https://doi.org/10.1007/s00248-020-01526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01526-5

Keywords

Navigation